Qualitative theory of *p*-adic dynamical systems

Evgeny Zelenov

Steklov Mathematical Institute

ZiF, Bielefeld, 2013

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Analytic dynamical system. Definition.
- Analytic dynamical systems. Geometry.
- General properties. The Poincare recurrence theorem. Mixing.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Classification. Entropy.
- The baker's map.

Analytic dynamical system = (X, T)

- X p-adic analytic manifold
- T analytic (auto/endo)morphism of X

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem (J. P. Serre)

Suppose X is compact, non-empty analytic manifold over \mathbb{Q}_p everywhere of the same dimension $d \ge 1$. Then:

- X is the disjoint union of a finite number of balls.
- The number of balls in a decomposition of X into a disjoint union of a finite number of balls is well determined mod (p - 1).

Corollary

Such an X is determined, up to an isomorphism, by a number $\tau = \tau(X) \in \{1, 2, \dots, p-1\}.$

- *p*-Adic integers \mathbb{Z}_p , $\tau(\mathbb{Z}_p) = 1$
- Projective line $\mathbf{P}^{1}\left(\mathbb{Q}_{p}
 ight)$, $au\left(\mathbf{P}^{1}
 ight)=2$
- Unite circle $S = \{x : |x|_p = 1\}, \tau(S) = p 1$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Graph $\Gamma = \Gamma(X)$

- Vertices of Γ are balls in X.
- Two vertices v_1 and v_2 of Γ are connected by an edge $[v_1, v_2]$ iff $v_1 \subset v_2$ and for any ball $v \in X$, $v_1 \subseteq v \subseteq v_2$ we have $v = v_1$ or $v = v_2$.
- $\Gamma(X)$ is a tree.
- Number of connected components of Γ is equal to $\tau(X)$.
- Every component has unique vertice (=root) with *p* neighbours. Any other vertice has *p* + 1 neighbours.
- There is one-to-one correspondence between points of X and infinite pathes without returns starting at a root point .

ション ふゆ く は マ く ほ マ く し マ

Measure $\mu(B_{root})$ of the root ball B_{root} can be chosen arbitrarily. $\mu(X) = \sum_{roots} \mu(B_{root}) = 1.$ Measure of a ball at distance *n* from B_{root} is equal to $p^{-n}\mu(B_{root})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Proposition

Let T be an analytic automorphism of X. That T can be uniquely extended to automorphism of $\Gamma(X)$.

ション ふゆ く は マ く ほ マ く し マ

Analytic dynamical system is an example of hierarchical dynamical system (HDS).

Phase space = boundary of a tree.

Dynamical map = boundary trace of a tree endomorphism.

Theorem 1

Let (X, T) be the measure preserving HDS. By $N_B^n(x)$ denote the number of returns from $x \in B$ into a ball B during the time n. Then we have:

- $N_B^n(x) \to \infty$ when $n \to \infty \ \forall x, \forall B$;
- $N_B^n(x)$ is indepentent of $x \in B$;

Corollary

HDS is never totally ergodic. It means that \forall HDS (X, T) there exists $k \ge 1$ such that (X, T^k) is not ergodic.

Ergodicity

Theorem 2

The measure-preserving HDS is ergodic iff $\forall B$ there exists the following limit:

$$\lim_{n\to\infty}\frac{1}{n}N_B^n=\mu(B).$$

Theorem 2'

The measure-preserving HDS is ergodic iff $\forall B$ the first return time is equal to $1/\mu(B)$.

Corollary

- For the ergodic measure-preserving HDS there are no periodic orbits.
- Any HDS is uniquely ergodic.

Definition

A DS (X, T) is called mixing if $\forall A \subset X$ and $\forall B \subset X$ the sequence $M_k(A, B) = \mu (T^k A \cap B)$ tends to $\mu(A)\mu(B)$ as $k \to \infty$.

Theorem 3

The HDS is never mixing.

Hint.

$$M_n(A,B) = \begin{cases} 0, \\ \mu(T^nA), & \nrightarrow \mu(A)\mu(B). \\ \mu(B). \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Proposition

Let (X, T) be the HDS of type 1 $(\tau(X)=1)$ then T is an automorphism of X iff T is measure-preserving. In that case T is a permutation of balls of the same measure in every ergodic component. Entropy(T) = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 4

Let (X, T) be the HDS of type $\tau = 2$. Then T is the superposition of the following transformations:

- Permutation of roots. Entropy = 0.
- *n*-shift. Entropy = n.

Hypothesis

Let (X, T) be the HDS of type $\tau \ge 2$. Then T is the superposition of the following transformations:

- Permutation of roots. Entropy = 0.
- $(n_1, n_2, ..., n_k)$ -shifts, $k = \frac{1}{2}\tau(\tau 1)$. Entropy ?.

Let $X = \mathbb{Z}_p \times \mathbb{Z}_p$ with standard metric $||z|| = \max\{|x|_p, |y|_p\}, z = (x, y) \in X.$ The baker's map is defined by the formula

$$T(x,y) = \left(\frac{x-x_0}{p}, x_0 + py\right),$$

where $x_0 = x \pmod{p}$.

Theorem <u>6</u>

The baker's map is mixing.

Hint.

$$T(B_0 \times B_1) = B_0 \times \bigcup_{a=0}^{p-1} B_2(a).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●