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Analytic dynamical system. Definition

Analytic dynamical system = (X ,T )

X - p-adic analytic manifold
T - analytic (auto/endo)morphism of X



p-Adic Analytic Manifold

Theorem (J. P. Serre)

Suppose X is compact, non-empty analytic manifold over Qp

everywhere of the same dimension d ≥ 1. Then:
X is the disjoint union of a finite number of balls.
The number of balls in a decomposition of X into a disjoint
union of a finite number of balls is well determined
mod (p − 1).

Corollary
Such an X is determined, up to an isomorphism, by a number
τ = τ(X ) ∈ {1, 2, . . . , p − 1}.



Examples

p-Adic integers Zp, τ (Zp) = 1

Projective line P1 (Qp), τ
(
P1
)

= 2

Unite circle S = {x : |x |p = 1}, τ(S) = p − 1



Graph Γ = Γ(X )

Vertices of Γ are balls in X .
Two vertices v1 and v2 of Γ are connected by an edge [v1, v2]
iff v1 ⊂ v2 and for any ball v ∈ X , v1 ⊆ v ⊆ v2 we have
v = v1 or v = v2.
Γ(X ) is a tree.
Number of connected components of Γ is equal to τ(X ).
Every component has unique vertice (=root) with p
neighbours. Any other vertice has p + 1 neighbours.
There is one-to-one correspondence between points of X and
infinite pathes without returns starting at a root point .



Measure

Measure µ (Broot) of the root ball Broot can be chosen arbitrarily.
µ(X ) =

∑
roots µ (Broot) = 1.

Measure of a ball at distance n from Broot is equal to p−nµ (Broot).



Hierarchical dynamical systems

Proposition
Let T be an analytic automorphism of X . That T can be uniquely
extended to automorphism of Γ(X ).

Analytic dynamical system is an example of hierarchical
dynamical system (HDS).
Phase space = boundary of a tree.
Dynamical map = boundary trace of a tree endomorphism.



The Poincare recurrence theorem

Theorem 1
Let (X ,T ) be the measure preserving HDS. By Nn

B(x) denote the
number of returns from x ∈ B into a ball B during the time n.
Then we have:

Nn
B(x)→∞ when n→∞ ∀x ,∀B ;

Nn
B(x) is indepentent of x ∈ B ;

Corollary

HDS is never totally ergodic. It means that ∀ HDS (X ,T ) there
exists k ≥ 1 such that (X ,T k) is not ergodic.



Ergodicity

Theorem 2
The measure-preserving HDS is ergodic iff ∀B there exists the
following limit:

lim
n→∞

1

n
Nn
B = µ(B).

Theorem 2’
The measure-preserving HDS is ergodic iff ∀B the first return time
is equal to 1/µ(B).

Corollary
For the ergodic measure-preserving HDS there are no periodic
orbits.
Any HDS is uniquely ergodic.



Mixing

Definition
A DS (X ,T ) is called mixing if ∀ A ⊂ X and ∀ B ⊂ X the
sequence Mk(A,B) = µ

(
T kA ∩ B

)
tends to µ(A)µ(B) as k →∞.

Theorem 3
The HDS is never mixing.

Hint.

Mn(A,B) =


0,

µ (T nA) ,

µ(B).

9 µ(A)µ(B).



Classification of HDS

Proposition

Let (X ,T ) be the HDS of type 1 (τ(X )=1) then T is an
automorphism of X iff T is measure-preserving. In that case T is a
permutation of balls of the same measure in every ergodic
component. Entropy(T ) = 0.



Classification of HDS

Theorem 4
Let (X ,T ) be the HDS of type τ = 2. Then T is the superposition
of the following transformations:

Permutation of roots. Entropy = 0.
n-shift. Entropy = n.

Hypothesis

Let (X ,T ) be the HDS of type τ ≥ 2. Then T is the superposition
of the following transformations:

Permutation of roots. Entropy = 0.
(n1, n2, . . . , nk)-shifts, k = 1

2τ(τ − 1). Entropy - ?.



non-HSD. The baker’s map

Let X = Zp × Zp with standard metric
‖z‖ = max{|x |p, |y |p}, z = (x , y) ∈ X .
The baker’s map is defined by the formula

T (x , y) =

(
x − x0

p
, x0 + py

)
,

where x0 = x( mod p).

Theorem 6
The baker’s map is mixing.

Hint.

T (B0 × B1) = B0 ×
p−1⋃
a=0

B2(a).


