Criteria of measure-preservation for p-adic dynamical systems
 (joint talk with Andrei Khrennikov)

Ekaterina Yurova

Linnaeus University, Sweden

April 14, 2013

Algebraic and arithmetic dynamics are actively developed fields of general theory of dynamical systems. The bibliography collected by Franco Vivaldi contains 216 articles and books, see
F. Vivaldi, Algebraic and arithmetic dynamics, http://www.maths.qmul.ac.uk/ fv/database/algdyn.pdf
Extended bibliography also can be found in books:

- A. Khrennikov, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Kluwer, Dordreht, 1997.
- A. Khrennikov, M. Nilsson, p-adic deterministic and random dynamics, Kluwer, Dordrecht, 2004.
- V. Anashin, A. Khrennikov, Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics vol 49, Walter de Gruyter (Berlin — New York), 2009.

Definitions

Consider $\left\langle\mathbb{Z}_{p}, \mu_{p}, f\right\rangle$, where:

- \mathbb{Z}_{p} is a ring of p-adic integers;
- the normalized Haar measure μ_{p};
- $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is a μ_{p}-measurable function that is continuous with respect to p-adic metric.

Definitions

The space \mathbb{Z}_{p} is equipped with a natural probability measure, namely, the Haar measure μ_{p} normalized so that $\mu_{p}\left(\mathbb{Z}_{p}\right)=1$:
Balls $B_{p^{-r}}(a)$ of non-zero radii constitute the base of the corresponding σ-algebra of measurable subsets, $\mu_{p}\left(B_{p^{-r}}(a)\right)=p^{-r}$.
The measure μ_{p} is a regular Borel measure, so all continuous transformations $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ are measurable with respect to μ_{p}. A measurable mapping $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is called measure-preserving if $\mu\left(f^{-1}(S)\right)=\mu(S)$ for each measurable subset $S \subset \mathbb{Z}_{p}$.

Definitions

Let a transformation $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be non-expanding with respect to the p-adic metric; that is, let f be a $\mathbf{1}$-Lipschitz with respect to the p-adic metric, i.e. for all $x, y \in \mathbb{Z}_{p}$

$$
|f(x)-f(y)|_{p} \leq|x-y|_{p}
$$

The 1-Lipschitz property may be re-stated in terms of congruences. Given $a, b \in \mathbb{Z}_{p}$ and $k \in \mathbb{N}=\{1,2,3, \ldots\}$, the congruence $a \equiv b$ $\left(\bmod p^{k}\right)$ is well defined: the congruence just means that images of a of b under action of the ring epimorphism $\bmod p^{k}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{k} \mathbb{Z}$ of the ring \mathbb{Z}_{p} onto the residue ring $\mathbb{Z} / p^{k} \mathbb{Z}$ modulo p^{k} coincide.
The congruence $a \equiv b\left(\bmod p^{k}\right)$ is equivalent to the inequality $|a-b|_{p} \leq p^{-k}$.
Therefore the transformation $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is 1-Lipschitz if and only if $f(a) \equiv f(b)\left(\bmod p^{k}\right)$ once $a \equiv b\left(\bmod p^{k}\right)$.

Definitions

A 1-Lipschitz transformation $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is called bijective modulo p^{k} if the reduced mapping $f \bmod p^{k}$ is a permutation on $\mathbb{Z} / p^{k} \mathbb{Z}$.
The following theorem holds:
Theorem (V. Anashin)
A 1-Lipschitz transformation $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is measure-preserving if and only if it is bijective modulo p^{k} for all $k=1,2,3, \ldots$.

Definitions

Given a continuous p-adic function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ defined on \mathbb{Z}_{p} and valuated in \mathbb{Z}_{p}. There exists a unique sequence $B_{0}, B_{1}, B_{2}, \ldots$ of p-adic integers such that

$$
f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x)
$$

for all $x \in \mathbb{Z}_{p}$, where

$$
\chi(m, x)= \begin{cases}1, & \text { if }|x-m|_{p} \leq p^{-n} \\ 0, & \text { otherwise }\end{cases}
$$

and $n=1$ if $m=0$;
n is uniquely defined by the inequality $p^{n-1} \leq m \leq p^{n}-1$ otherwise.
This series is called the van der Put series of the function f.

Definitions

The number n in the definition of $\chi(m, x)$ has a meaning as

$$
\left\lfloor\log _{p} m\right\rfloor=(\text { the number of digits in a base- } p \text { expansion for } m)-1,
$$

therefore $n=\left\lfloor\log _{p} m\right\rfloor+1$ for all $m \in \mathbb{N}_{0}$ and $\left\lfloor\log _{p} 0\right\rfloor=0$. And $\lfloor\alpha\rfloor$ for a real α denotes the nearest to α rational integer which does not exceed α.
Note that $\chi(m, x)$ is merely a characteristic function of the ball $\mathbf{B}_{p^{-\left\lfloor\log _{p} m\right\rfloor-1}}(m)=m+p^{\left\lfloor\log _{\rho} m\right\rfloor-1} \mathbb{Z}_{p}$ of radius $p^{-\left\lfloor\log _{p} m\right\rfloor-1}$ centered at $m \in \mathbb{N}_{0}=\{0,1,2 \ldots\}:$

$$
\begin{gathered}
\chi(m, x)= \begin{cases}1, & \text { if } x \equiv m\left(\bmod p p^{\left\lfloor\log _{p} m\right\rfloor+1}\right) ; \\
0, & \text { otherwise }\end{cases} \\
\chi(m, x)= \begin{cases}1, & \text { if } x \in \mathbf{B}_{p-\left\lfloor\log _{p} m\right\rfloor-1}(m) \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Definitions

The sequence $B_{0}, B_{1}, \ldots B_{m}$ of van der Put coefficients of the function f tends p-adically to 0 as $m \rightarrow \infty$, and the series converges uniformly on \mathbb{Z}_{p}, and vice versa.
The coefficients B_{m} are related to values of the function f as follows. Let

$$
m=m_{0}+\ldots+m_{n-2} p^{n-2}+m_{n-1} p^{n-1}
$$

be a base- p expansion for m, i.e., $m_{j} \in\{0, \ldots, p-1\}, j=0,1, \ldots, n-1$ and $m_{n-1} \neq 0$, then

$$
B_{m}= \begin{cases}f(m)-f\left(m-m_{n-1} p^{n-1}\right), & \text { if } m \geq p \\ f(m), & \text { otherwise }\end{cases}
$$

Also note that the function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is $\mathbf{1}$-Lipschitz iff $B_{m}=b_{m} p^{\left\lfloor\log _{\rho} m\right\rfloor}$, where $b_{m} \in \mathbb{Z}_{p}$.

1-Lipschitz in terms of the coordinate functions

A 1-Lipschitz function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ has the coordinate representation:
$f\left(x_{0}+p x_{1}+\ldots+p^{k} x_{k}+\ldots\right)=\varphi_{0}\left(x_{0}\right)+p \varphi_{1}\left(x_{0}, x_{1}\right)+\ldots+p^{k} \varphi_{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)+\ldots$
where $\varphi_{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ are p-valued functions that depend on p-valued variables $x_{0}, x_{1}, \ldots, x_{k}, k=0,1,2, \ldots$.

Outline

In this talk

1. Describe all measure-preserving with respect to the measure μ_{p} 1-Lipschitz functions $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ for $p \neq 2$ in terms of
1.1 van der Put basis
1.2 coordinate functions
2. Consider case $p=3$, where all transformations of the field of residues $\mathbb{Z} / 3 \mathbb{Z}$ can be set as linear polinomials from $\mathbb{Z} / 3 \mathbb{Z}[x]$, and, in particular, where all bijective transformations can be set via polinomials $a x+b, a \neq 0$.

Results: M-P via van der Put basis for $\forall p$

Theorem
Let $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a 1-Lipschitz function and

$$
f(x)=\sum_{m=0}^{\infty} p^{\left\lfloor\log _{\rho} m\right\rfloor} b_{m} \chi(m, x)
$$

be the van der Put representation of this function, where $b_{m} \in \mathbb{Z}_{p}, m=0,1,2, \ldots$
Then f preserves measure iff

1. $\left\{b_{0}, b_{1}, \ldots, b_{p-1}\right\}$ establish a complete set of residues modulo p, i.e. the function f is bijective modulo p;
2. for every $m \in\left\{0, \ldots, p^{k}-1\right\}$ and $k \in\{2,3, \ldots\}$, the elements in the set

$$
\left\{b_{m+p^{k}}, b_{m+2 p^{k}}, \ldots, b_{m+(p-1) p^{k}}\right\}
$$

are all nonzero residues modulo p.

Results: M-P via van der Put basis for $\forall p$

Second condition of this Theorem means that for $k \geq 1$ and any fixed $\bar{x}=x_{0}+p x_{1}+\ldots+p^{k-1} x_{k-1}$ the functions

$$
\beta_{\bar{x}}(h)= \begin{cases}b_{\bar{x}+h p^{k}}, & \text { if } h=1,2, \ldots, p-1 \\ 0, & \text { if } h=0\end{cases}
$$

are permutations on $\mathbb{Z} / p \mathbb{Z}$. Then one can obtain criterion of measure-preservation for the p-adic functions represented in coordinate form.

Results: M-P via coordinate functions for $\forall p$

Let $\varphi_{k, \bar{x}}: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ be a function obtained from $\varphi_{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ by fixating the values of variables $\bar{x}=\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)$.
Theorem
Let 1-Lipschitz function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ has coordinate representation
$f\left(x_{0}+3 x_{1}+\ldots+3^{k} x_{k}+\ldots\right)=\varphi_{0}\left(x_{0}\right)+p \varphi_{1}\left(x_{0}, x_{1}\right)+\ldots+p^{k} \varphi_{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)+\ldots$
where $\varphi_{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ are p-valued functions, $k=0,1,2, \ldots$.
The function f preserves measure iff

1. $\varphi_{0}\left(x_{0}\right)$ is bijective on $\mathbb{Z} / p \mathbb{Z}$;
2. $\varphi_{k, \bar{x}}: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ is bijective on $\mathbb{Z} / p \mathbb{Z}$ for any fixed $\bar{x}=\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)$ and $k \geq 1$.

Results: $\mathrm{M}-\mathrm{P}$ in additive form for $\forall p$

Theorem

A 1-Lipschitz function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ preserves measure iff it can be represented as

$$
f(x)=\xi(x)+p \cdot h(x),
$$

where $h: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is an arbitrary 1-Lipschitz function, and the functions $\xi(x)$ represented via the van der Put series is such that

$$
\xi(x)=\sum_{i=0}^{p-1} G(i) \chi(i, x)+\sum_{k=1}^{\infty} \sum_{m=0}^{p^{k}-1} \sum_{i=1}^{p-1} g_{m}(i) p^{k} \cdot \chi\left(m+i \cdot p^{k}, x\right),
$$

where g_{m} is a permutation on the set $\{1, \ldots, p-1\}$ and G is a permutation on the set $\{0,1, \ldots, p-1\}$.

Results: M-P via van der Put basis for $p=3$

Theorem
Let $f: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ be a 1-Lipschitz function and

$$
f(x)=\sum_{m=0}^{\infty} 3^{\left\lfloor\log _{3} m\right\rfloor} b_{m} \chi(m, x)
$$

be the van der Put representation of this function, where $b_{m}=b_{\bar{m}+3^{n}} \in \mathbb{Z}_{3}, m \in\{0,1,2, \ldots\}$.
Then f preserves measure iff

1. $b_{m} \neq 0(\bmod 3)$ for $m \geq 3$;
2. $b_{\bar{m}+3^{k}}+b_{\bar{m}+2 \cdot 3^{k}} \equiv 0 \bmod 3$ for $0 \leq \bar{m} \leq 3^{k}-1$, $\bar{m} \in\left\{0,1, \ldots, 3^{k}-1\right\}, k \geq 2$;
3. $\left(b_{0} \bmod 3\right),\left(b_{1} \bmod 3\right)$, and $\left(b_{2} \bmod 3\right)$ establish a complete set of residues modulo 3, or in other words,

$$
\left\{\begin{array}{l}
b_{0}+b_{1}+b_{2} \equiv 0 \bmod 3 \\
b_{0}^{2}+b_{1}^{2}+b_{2}^{2} \equiv-1 \bmod 3
\end{array}\right.
$$

Results: M-P in additive form for $p=3$

Theorem
Let $h: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ be an arbitrary 1-Lipschitz function. A 1-Lipschitz function $f: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ preserves measure iff it can be represented as

$$
f(x)=\xi(x)+3 \cdot h(x),
$$

where

$$
\begin{aligned}
\xi(x) & =b_{0} \chi(x, 0)+b_{1} \chi(x, 1)+b_{2} \chi(x, 2)+ \\
& +\sum_{k=1}^{\infty} 3^{k} \cdot\left(\sum_{\bar{m}=0}^{3^{k}-1} b_{\bar{m}} \cdot\left(\chi\left(x, \bar{m}+3^{k}\right)-\chi\left(x, \bar{m}+2 \cdot 3^{k}\right)\right)\right)+3 \phi(x)
\end{aligned}
$$

and where

1. for $b_{\bar{m}} \in\{1,2\}$
2. for $b_{0}, b_{1}, b_{2} \in\{0,1,2\}$ holds $b_{0}+b_{1}+b_{2} \equiv 0 \bmod 3$ and $b_{0}^{2}+b_{1}^{2}+b_{2}^{2} \equiv-1 \bmod 3 ;$
3. $\phi(x)=\phi\left(x_{0}+3 x_{1}+\ldots+3^{k} x_{k}+\ldots\right)=\sum_{k=1}^{\infty} 3^{k} \cdot \frac{x_{k}\left(x_{k}-1\right)}{2}$.

Results: M-P in additive form for $p=3$

Set a "fixed" term $\phi(x)=x$.
Theorem
The 1-Lipschitz function $f: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ preserves measure iff f can be represented as

$$
f(x)=\xi(x)+3 \cdot h(x),
$$

where $h: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ is 1-Lipschitz function and

$$
\begin{aligned}
\xi(x) & =\xi\left(x_{0}+3 x_{1}+\ldots+3^{k} x_{k}+\ldots\right)= \\
& =b+c \cdot x_{0}+x+\sum_{k=1}^{\infty} 3^{k}\left(I_{M_{k}}\left(x_{0}+\ldots+3^{k-1} x_{k-1}\right) \cdot \frac{x_{k} \cdot\left(5-3 x_{k}\right)}{2}\right),
\end{aligned}
$$

where $c \in\{0,1\}, b \in\{0,1,2\}$ and for $M_{k} \subseteq\left\{0,1, \ldots, 3^{k}-1\right\}$

$$
I_{M_{k}}\left(x_{0}+\ldots+3^{k-1} x_{k-1}\right)= \begin{cases}1, & \text { if } x_{0}+\ldots+3^{k-1} x_{k-1} \in M_{k} \\ 0, & \text { otherwise }\end{cases}
$$

(in other words, $I_{M_{k}}$ is the characteristic function of the set $M_{k}, k \geq 1$).

Results

From the Theorem above we, in particular, get functions of the form

1. $f(x)=b+x+3 h(x)$ if set $c=0$ and $M_{k}=\emptyset, k \geq 1$;
2. $f(x)=b+2 x+3 h(x)$ if set $c=1$ and $M_{k}=\left\{0,1, \ldots, 3^{k}-1\right\}$, $k \geq 1$.
Such classes of 1-Lipschitz measure-preserving functions were obtained by V. Anashin.

Definitions, Ergodicity

A measure-preserving mapping $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is called ergodic if $f^{-1}(S)=S$ implies either $\mu_{p}(S)=0$ or $\mu_{p}(S)=1$.
A 1-Lipschitz transformation $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is called transitive modulo p^{k} if $f \bmod p^{k}$ is a permutation that is cycle of length p^{k}.
The following theorem holds:

Theorem (V. Anashin)

A 1-Lipschitz transformation $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is ergodic if and only if it is transitive modulo p^{k} for all $k=1,2,3, \ldots$.
We obtained criteria of ergodicity in the terms of the coordinate functions corresponding to the digits in the canonical expansion of p-adic numbers, and presented concrete classes of ergodic functions. A 1-Lipschitz function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ has the coordinate representation:
$f\left(x_{0}+p x_{1}+\ldots+p^{k} x_{k}+\ldots\right)=\varphi_{0}\left(x_{0}\right)+p \varphi_{1}\left(x_{0}, x_{1}\right)+\ldots+p^{k} \varphi_{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)+\ldots$
where $\varphi_{k}\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ are p-valued functions that depend on p-valued variables $x_{0}, x_{1}, \ldots, x_{k}, k=0,1,2, \ldots$.

Summary of results, Ergodicity for $\forall p$

1. General criterion, where ergodicity of the function f is determined via a product of permutations $\varphi_{k, \bar{x}}$ over $\mathbb{Z} / p \mathbb{Z}$ depending on the order of elements in the sequence of residues modulo p^{k}, where $f_{k-1}=f$ $(\bmod p)^{k}$ in

$$
\tau_{k}=\left\{\bar{x}, f_{k-1}(\bar{x}), \ldots, f_{k-1}^{\left(p^{k}-1\right)}(\bar{x})\right\} .
$$

Moreover, conditions of ergodicity does not depend on the choice of the parameter \bar{x}, in particular, set $\bar{x}=0$.
Permutations $\varphi_{k, f_{k-1}^{(i)}(0)}$ can commute, then we can write criterion of ergodicity in "'compact way"'.

Summary of results, Ergodicity for $\forall p$

2. We answered the following question.

Let f be a measure-preserving 1-Lipschitz function.
How much should one change such function to get an ergodic function?
It is enough to set in special way permutation $\varphi_{k, 0}$ for arbitrary choosen $\varphi_{k, \bar{x}}, \bar{x} \neq 0$ and $k \geq 1$.
3. Compact description of some classes of ergodic 1-Lipschitz p-adic functions.
In particular, were described ergodic functions, where

$$
\begin{aligned}
& \text { 1. } \varphi_{k, \bar{x}}=x_{k}+\beta(\bar{x}) ; \\
& \text { 2. } \varphi_{k, \bar{x}}=x_{k} \cdot \alpha_{k}\left(x_{0}, \ldots, x_{s}\right)+\beta(\bar{x}) \text { for some fixed } s .
\end{aligned}
$$

As Corollary of these results were obtained description of uniformly differentiable modulo p 1-Lipschitz functions, see Open question 4.60, V. Anashin, A. Khrennikov, Applied Algebraic Dynamics.

References

1. Vladimir Anashin and Andrei Khrennikov, Applied Algebraic Dynamics, v 49, de Gruyter Expositions in Mathematics, Walter de Gruyter, Berlin - New York, 2009
2. W. H. Schikhof, Ultrametric calculus, An introduction to p-adic analysis, Cambridge University Press, Cambridge, 1984
3. Khrennikov, A., Yurova, E., Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis, Journal of Number Theory, 133(2), 484-491, 2013
4. E.I. Yurova, On measure-preserving functions over \mathbb{Z}_{3}, Ultrametric Analysis, and Applications, 4, 326-335, 2012
5. Andrei Khrennikov, Ekaterina Yurova, Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions, 2013, http://arxiv.org/abs/1303.6472
