Quantum mechanics on rational numbers

A. Vourdas
University of Bradford

- background
- $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ and its Pontryagin dual group \mathbb{Z}_{p}
- \mathbb{Q} / \mathbb{Z} and its Pontryagin dual group $\widehat{\mathbb{Z}}$
- \mathbb{Q} and its Pontryagin dual group $\mathbb{A} \mathbb{Q} / \mathbb{Q}$ $\mathbb{Q}^{(\pi)}$ and its Pontryagin dual \mathbb{S}_{π} (solenoid) $n^{-1} \mathbb{Z}$ and its Pontryagin dual $\mathbb{R} / n \mathbb{Z}$
- The Schwartz-Bruhat space for $S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$
- examples: $S\left(\mathbb{S}_{\pi}, \mathbb{Q}^{(\pi)}\right), S\left[(\mathbb{R} / n \mathbb{Z}), n^{-1} \mathbb{Z}\right]$
- Heisenberg-Weyl group and other phase space methods in $\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right) \times \mathbb{Q}$
- the set of subsystems of $S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$
- partial order
- T_{0}-topology
- Discussion
A. Vourdas, JMAA 394, 48 (2012)

$\mathbb{Q}_{p} / \mathbb{Z}_{p}$ and its Pontryagin dual group \mathbb{Z}_{p}

- \mathbb{Z}_{p} as inverse limit.

$$
\lim _{\leftrightarrows} \mathbb{Z}\left(p^{\ell}\right)=\mathbb{Z}_{p}
$$

\mathbb{Z}_{p} profinite: compact, totally disconnected group

$$
a_{p}=\bar{a}_{0}+\bar{a}_{1} p+\ldots ; \quad 0 \leq \bar{a}_{i} \leq p-1
$$

- Pontryagin dual group of \mathbb{Z}_{p} is $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ as direct limit.

$$
\lim _{\longrightarrow} \mathbb{Z}\left(p^{\ell}\right)=\mathbb{Q}_{p} / \mathbb{Z}_{p}
$$

fractional p-adic numbers (cosets)

$$
\mathfrak{b}_{p}=\overline{\mathfrak{b}}_{-k} p^{-k}+\ldots+\overline{\mathfrak{b}}_{-1} p^{-1}
$$

$\mathbb{Q}_{p} / \mathbb{Z}_{p}$ isomorphic to Prüfer group $\mathcal{C}\left(p^{\infty}\right)$

- characters in $\mathbb{Q}_{p} / \mathbb{Z}_{p}$

$$
\chi_{p}\left(a_{p} \mathfrak{b}_{p}\right)=\exp \left(i 2 \pi a_{p} \mathfrak{b}_{p}\right)
$$

\mathbb{Q} / \mathbb{Z} and its Pontryagin dual group $\widehat{\mathbb{Z}}$

- $\widehat{\mathbb{Z}}$ as inverse limit

$$
\lim \mathbb{Z}(\ell)=\widehat{\mathbb{Z}}
$$

$\widehat{\mathbb{Z}}$ profinite group

$$
\widehat{\mathbb{Z}}=\prod_{p \in \Pi} \mathbb{Z}_{p}
$$

elements

$$
s=\left(s_{2}, \ldots, s_{p}, \ldots\right) ; \quad s_{p} \in \mathbb{Z}_{p} ; \quad p \in \Pi
$$

\mathbb{Z} is embedded into $\widehat{\mathbb{Z}}$:

$$
\mathbb{Z} \ni n \rightarrow(n, n, n, \ldots) \in \widehat{\mathbb{Z}}
$$

- Pontryagin dual group of $\widehat{\mathbb{Z}}$ is \mathbb{Q} / \mathbb{Z} \mathbb{Q} / \mathbb{Z} as direct limit:

$$
\underset{\longrightarrow}{\lim } \mathbb{Z}(\ell)=\mathbb{Q} / \mathbb{Z} \quad \mathbb{Q} / \mathbb{Z}=\bigoplus_{p \in \Pi} \mathbb{Q}_{p} / \mathbb{Z}_{p}
$$

$\mathfrak{x} \in \mathbb{Q} / \mathbb{Z}:\left(\mathfrak{x}_{2}, \ldots, \mathfrak{x}_{p}, \ldots\right)$, where $\mathfrak{x}_{p} \in \mathbb{Q}_{p} / \mathbb{Z}_{p}, p \in \Pi$ all but a finite number of the \mathfrak{x}_{p} zero

- characters in \mathbb{Q} / \mathbb{Z}

$$
\chi(s \mathfrak{x})=\prod_{p \in \Pi} \chi_{p}\left(s_{p} \mathfrak{x}_{p}\right)
$$

converges: only a finite number of the $\chi_{p}\left(s_{p} \mathfrak{x}_{p}\right)$ different from 1.

\mathbb{Q} and its Pontryagin dual group $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$

- ring $\mathbb{A}_{\mathbb{Q}}$ of adeles
$y=\left(y_{\infty}, y_{2}, \ldots, y_{p}, \ldots\right) ; \quad y_{p} \in \mathbb{Q}_{p} ; \quad \mathbb{Q}_{\infty}=\mathbb{R}$
but $y_{p} \in \mathbb{Z}_{p}$ for all but a finite number of p
$\mathbb{A}_{\mathbb{Q}}$: restricted direct product of \mathbb{Q}_{p} with respect to \mathbb{Z}_{p} :

$$
\mathbb{A}_{\mathbb{Q}}=\prod^{\prime} \mathbb{Q}_{p}
$$

- \mathbb{Q} embedded into $\mathbb{A}_{\mathbb{Q}}$ as

$$
\mathbb{Q} \ni u \rightarrow(u, u, u, \ldots) \in \mathbb{A}_{\mathbb{Q}}
$$

- $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$ as inverse limit

$$
\lim \mathbb{R} / n \mathbb{Z} \cong \mathbb{A}_{\mathbb{Q}} / \mathbb{Q}
$$

$\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$ describes finite covers of \mathbb{S}.

- Pontryagin dual group of $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$ is \mathbb{Q} \mathbb{Q} as direct limit

$$
\lim _{\longrightarrow} n^{-1} \mathbb{Z} \cong \mathbb{Q}
$$

- Additive characters on \mathbb{Q} are given by

$$
\begin{aligned}
& \psi(u y)=\exp \left[i 2 \pi\left(-u y_{\infty}+u y_{2}+\ldots\right)\right]=\prod_{p \in \Pi_{\infty}} \chi_{p}\left(u y_{p}\right) \\
& u \in \mathbb{Q} ; \quad y \in \mathbb{A}_{\mathbb{Q}} / \mathbb{Q} \\
& \chi_{\infty}\left(u y_{\infty}\right)=\exp \left(-i 2 \pi u y_{\infty}\right)
\end{aligned}
$$

minus sign in $\chi_{\infty}\left(u y_{\infty}\right)$ and a plus sign in $\chi_{p}\left(u y_{p}\right)$ $y \rightarrow y+$ rational: same result
convergence: finite number of factors $\neq 1$

- fundamental domain for $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$ is $\mathbb{S} \times \widehat{\mathbb{Z}}$ $(\mathbb{S}=\mathbb{R} / \mathbb{Z})$.
- $\mathbb{Q}^{(\pi)}$: subgroup of \mathbb{Q}

$$
\mathbb{Q}^{(\pi)}=\left\{\left.\frac{a}{\prod_{p_{i} \in \pi} p_{i}^{e_{i}}} \right\rvert\, a \in \mathbb{Z}\right\}
$$

Pontryagin dual group of $\mathbb{Q}^{(\pi)}$: solenoid \mathbb{S}_{π} ($y_{0}, y_{2}, \ldots, y_{p}, \ldots$) where $y_{p}=0$ for $p \notin \pi$

$$
\lim _{\leftarrow} \mathbb{R} / k^{n} \mathbb{Z} \cong \mathbb{S}_{\pi} ; \quad k=\prod_{p \in \pi} p^{e}
$$

special case: $\pi=\{p\}$:
p-adic solenoid \mathbb{S}_{p} with elements (y_{0}, y_{p}).

- subgroup of $\mathbb{Q}^{(\pi)}$
$n^{-1} \mathbb{Z}=\left\{\left.\frac{a}{n}=\frac{a}{\prod_{p_{i} \in \pi} p_{i}^{e_{i}}} \right\rvert\, e_{i} \leq E_{i}\right\} ; \quad n=\prod_{p \in \pi} p_{i}^{E_{i}}$
Pontryagin dual group $\mathbb{R} / n \mathbb{Z}$
elements of $\mathbb{R} / n \mathbb{Z}$: (y_{0}, k) where $y_{0} \in \mathbb{S}$ and $k \in \mathbb{Z}(n)$ winding number $\mathbb{Z}(n) \cong \prod_{p \in \pi} \mathbb{Z}\left(p_{i}^{E_{i}}\right)$
chinese remainder theorem: winding number $k=\left(y_{p_{1}}, \ldots\right)$ where $y_{p_{i}} \in \mathbb{Z}\left(p_{i}^{E_{i}}\right)$
elements of $\mathbb{R} / n \mathbb{Z}$: $\left(y_{0}, y_{2}, \ldots, y_{p}, \ldots\right)$
$y_{p_{i}} \in \mathbb{Z}\left(p_{i}^{E_{i}}\right)$ component of winding number for that prime

The Schwartz-Bruhat space for $S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$

first: space Σ functions on $\mathbb{A}_{\mathbb{Q}}$ later: space \mathfrak{S} functions on $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$

- Schwartz-Bruhat space Σ : finite linear combinations of complex functions $\phi(y)$

$$
\phi(y)=\phi_{\infty}\left(y_{\infty}\right) \prod_{p \in \Pi} \phi_{p}\left(y_{p}\right) ; \quad y=\left(y_{\infty}, y_{2}, \ldots, y_{p}, \ldots\right) \in \mathbb{A}_{\mathbb{Q}}
$$

where
(1) $\phi_{\infty}\left(y_{\infty}\right) \in \mathcal{S}(\mathbb{R})$ (Schwartz)
(2) $\phi_{p}\left(y_{p}\right)$ locally constant complex functions with compact support,
(3) for all but a finite number of $p \in \Pi$ $\phi_{p}\left(y_{p}\right)=1$ if y_{p} is p -adic integer
$\Pi[\phi(y)]$ contains indices $\phi_{p}\left(y_{p}\right) \neq 1$
$\Pi_{1}[\phi(y)]$ subset $y_{p} \in \mathbb{Q}_{p}$ (finite) $\Pi_{2}[\phi(y)]$ subset $y_{p} \in \mathbb{Z}_{p}$ (finite)

- Integrals of functions in Σ over $\mathbb{A}_{\mathbb{Q}}$:

$$
\begin{aligned}
& \int_{\mathbb{A}_{\mathbb{e}}} \phi(y) d y=\int_{\mathbb{R}} \phi_{\infty}\left(y_{\infty}\right) d y_{\infty} \\
& \times \prod_{p \in \Pi_{1}[\phi(y)]} \int_{\mathbb{Q}_{p}} \phi_{p}\left(y_{p}\right) d y_{p} \prod_{p \in \Pi_{2}[\phi(y)]} \int_{\mathbb{Z}_{p}} \phi_{p}\left(y_{p}\right) d y_{p}
\end{aligned}
$$

finite number of factors $\neq 1$
p-adic integrals of locally constant functions with constant support $=$ finite sums.

- space \mathfrak{S}

From $\phi(y)$ on $\mathbb{A}_{\mathbb{Q}}$, to $f(\mathfrak{y})$ on $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$
Weil transf: add values of $\phi(y)$ in each coset in $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$:

$$
f(\mathfrak{y})=\int_{\mathbb{Q}} d u \phi(y+u) ; \quad \mathfrak{y}=\{y+u \mid u \in \mathbb{Q}\} ; \quad \mathfrak{y} \in \mathbb{A}_{\mathbb{Q}} / \mathbb{Q}
$$

then

$$
\int_{\mathbb{A}_{\mathbb{Q}}} \phi(y) d y=\int_{\mathbb{A}_{\mathbb{e}} / \mathbb{Q}} f(\mathfrak{y}) d \mathfrak{y}
$$

- Fourier transform of $f(\mathfrak{y})$

$$
F(u)=\int_{\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}} f(\mathfrak{y}) \psi(u \mathfrak{y}) d \mathfrak{y}=\int_{\mathbb{A}_{\mathbb{Q}}} \phi(y) \psi(y u) d y ; \quad u \in \mathbb{Q}
$$

write $F(u)$ as

$$
F(u)=F_{\infty}(u) \prod_{p \in \Pi[\phi(y)]} F_{p}(u) \prod_{p \notin \square[\phi(y)]} \Delta_{p}(u)
$$

Fourier trans. of $\phi_{p}\left(y_{p}\right)=1, y_{p} \in \mathbb{Z}_{p}$:
$\Delta_{p}(u)=0$ if $u \neq 0$
$\Delta_{p}(0)=1$ zero coset in $\mathbb{Q}_{p} / \mathbb{Z}_{p}$: p -adic integers
$u=a / b$ is p-adic integer if $p \nmid b$
$\Delta_{p}(u)=1$ if $u=a / b$ with $p \nmid b$

- inverse Fourier transform

$$
f(\mathfrak{y})=\int_{\mathbb{Q}} d u F(u) \psi(-u \mathfrak{y}) ; \quad \mathfrak{y} \in \mathbb{A}_{\mathbb{Q}} / \mathbb{Q}
$$

- scalar product

$$
(f, g)=\int_{\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}} \overline{f(\mathfrak{y})} g(\mathfrak{y}) d \mathfrak{y} ; \quad(F, G)=\int_{\mathbb{Q}} d u \overline{F(u)} G(u)
$$

- Parseval: $(f, g)=(F, G)$
below examples with variables in subgroups of \mathbb{Q} and in their Pontryagin dual groups
work in fundamental domain $\mathbb{S} \times \widehat{\mathbb{Z}}$ of $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$.

Examples

- QM for $S[(\mathbb{R} / \mathbb{Z}), \mathbb{Z}]$
$f(\mathfrak{y})=f_{\infty}\left(\mathfrak{y}_{\infty}\right)$ where $\mathfrak{y}_{\infty} \in \mathbb{S}$
(i.e., $f_{p}\left(\mathfrak{y}_{p}\right)=1$ for all $p \in \Pi$)

Fourier transform

$$
\begin{aligned}
F(u) & =\int_{\mathbb{S} \times \widehat{\mathbb{Z}}} f_{\infty}\left(\mathfrak{y}_{\infty}\right) \psi(u \mathfrak{y}) d \mathfrak{y} \\
& =\left[\int_{0}^{1} d \mathfrak{y}_{\infty} f_{\infty}\left(\mathfrak{y}_{\infty}\right) \chi_{\infty}\left(u \mathfrak{y}_{\infty}\right)\right] \\
& \times \prod_{p \in \Pi} \Delta_{p}(u)
\end{aligned}
$$

$F(u)$ non-zero: if $u \in \mathbb{Z}$
i.e., $u=a / b$ with $p \nless b$ for all primes

- QM for $S\left(\mathbb{S}_{p_{1}}, \mathbb{Q}^{\left(p_{1}\right)}\right)$
$f(\mathfrak{y})=f_{\infty}\left(\mathfrak{y}_{\infty}\right) f_{p_{1}}\left(\mathfrak{y}_{p_{1}}\right)$
(i.e., $f_{p}\left(\mathfrak{y}_{p}\right)=1$ for all $p \in \Pi-\left\{p_{1}\right\}$)

Fourier transform

$$
\begin{aligned}
F(u) & =\int_{\mathbb{S} \times \widehat{\mathbb{Z}}} f_{\infty}\left(\mathfrak{y}_{\infty}\right) f_{p_{1}}\left(\mathfrak{y}_{p_{1}}\right) \psi(u \mathfrak{y}) d \mathfrak{y} \\
& =\left[\int_{0}^{1} d \mathfrak{y}_{\infty} f_{\infty}\left(\mathfrak{y}_{\infty}\right) \chi_{\infty}\left(u \mathfrak{y}_{\infty}\right) \int_{\mathbb{Z}_{p}} d \mathfrak{y}_{p_{1}} f_{p_{1}}\left(\mathfrak{y}_{p_{1}}\right) \chi_{p_{1}}\left(u \mathfrak{y}_{p_{1}}\right)\right] \\
& \times \prod_{p \in \Pi-\left\{p_{1}\right\}} \Delta_{p}(u)
\end{aligned}
$$

$F(u)$ non-zero only if $u \in \mathbb{Q}^{\left(p_{1}\right)}$
i.e., $u=a / b$ with $p \nmid b$ for $p \in \Pi-\left\{p_{1}\right\}$

- QM for $S\left[\left(\mathbb{R} / p_{1}^{e_{1}} \mathbb{Z}\right), p_{1}^{-e_{1}} \mathbb{Z}\right]$ restrict the above formalism further $f_{p_{1}}\left(\mathfrak{y}_{p_{1}}\right)$ locally constant with given degree e_{1} : $f_{p_{1}}\left(\mathfrak{y}_{p_{1}}+\mathfrak{a}_{p_{1}}\right)=f_{p_{1}}\left(\mathfrak{y}_{p_{1}}\right)$ for $\left|\mathfrak{a}_{p_{1}}\right|_{p_{1}} \leq p_{1}^{-e_{1}}$
\mathfrak{y} : pair $\left(\mathfrak{y}_{\infty}, \mathfrak{y}_{p_{1}}\right)$ with $\mathfrak{y}_{\infty} \in \mathbb{R} / \mathbb{Z}$ and $\mathfrak{y}_{p_{1}} \in \mathbb{Z}\left(p_{1}^{e_{1}}\right)$ describes points in circle $\mathbb{R} /\left(p_{1}^{e_{1}} \mathbb{Z}\right)$ wrapped $p_{1}^{e_{1}}$ times around the circle \mathbb{R} / \mathbb{Z}
- QM for $S\left(\mathbb{S}_{\pi}, \mathbb{Q}^{(\pi)}\right)$ with $\pi=\left\{p_{1}, \ldots, p_{\ell}\right\}$

$$
f(\mathfrak{y})=f_{\infty}\left(\mathfrak{y}_{\infty}\right) f_{p_{1}}\left(\mathfrak{y}_{p_{1}}\right) \ldots f_{p_{\ell}}\left(\mathfrak{y}_{p_{\ell}}\right)
$$

Fourier transform $F(u)$ non-zero only if $u \in \mathbb{Q}^{(\pi)}$

- QM for $S\left[(\mathbb{R} / n \mathbb{Z}), n^{-1} \mathbb{Z}\right]$ with $n=p_{1}^{e_{1}} \ldots p_{\ell}^{e_{\ell}}$ restrict the formalism further $f_{p_{j}}\left(\mathfrak{y}_{p_{j}}\right)$, locally constant, with given degrees e_{j}

Phase space methods in $\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right) \times \mathbb{Q}$

- The Heisenberg-Weyl group $\mathcal{H} \mathcal{W}\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}, \mathbb{Q}, \mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right)$ displacement operators $D(\mathfrak{a}, b, \mathfrak{c})$

$$
\begin{aligned}
& {[\mathcal{D}(\mathfrak{a}, b, \mathfrak{c}) F](u)=\psi(\mathfrak{c}-\mathfrak{a} b+2 \mathfrak{a} u) F(u-b)} \\
& {[\mathcal{D}(\mathfrak{a}, b, \mathfrak{c}) f](\mathfrak{y})=\psi(\mathfrak{c}+\mathfrak{a} b-\mathfrak{y} b) f(\mathfrak{y}-2 \mathfrak{a})}
\end{aligned}
$$

$$
\mathfrak{a}, \mathfrak{c}, \mathfrak{y} \in \mathbb{A}_{\mathbb{Q}} / \mathbb{Q} ; \quad b, u \in \mathbb{Q}
$$

$\mathcal{H} \mathcal{W}\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}, \mathbb{Q}, \mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right)$ locally compact topological group.

- For any trace class operator θ

$$
\begin{aligned}
& \int_{\mathbb{A}_{\mathfrak{Q}} / \mathbb{Q}} d \mathfrak{a} \int_{\mathbb{Q}} d b \mathcal{D}(\mathfrak{a}, b, 0) \theta[\mathcal{D}(\mathfrak{a}, b, 0)]^{\dagger}=1 \operatorname{tr} \theta \\
& \theta=\int_{\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}} d \mathfrak{a} \int_{\mathbb{Q}} d b \mathcal{D}(\mathfrak{a}, b, 0) \operatorname{tr}[\theta \mathcal{D}(-\mathfrak{a},-b, 0)]
\end{aligned}
$$

- coherent states

$$
f_{\mathrm{coh}}(\mathfrak{y} \mid \mathfrak{a}, b) \equiv[\mathcal{D}(\mathfrak{a}, b, \mathfrak{c}) f](\mathfrak{y}) ; \quad \mathfrak{a} \in \mathbb{A}_{\mathbb{Q}} / \mathbb{Q} ; \quad b \in \mathbb{Q}
$$ with resolution of the identity:

$$
\int_{\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}} d \mathfrak{a} \int_{\mathbb{Q}} d b f_{\operatorname{con}(\mathfrak{y} \mid \mathfrak{a}, b)} \overline{f_{\mathrm{coh}}\left(\mathfrak{y}^{\prime} \mid \mathfrak{a}, b\right)}=\delta_{A}\left(\mathfrak{y}-\mathfrak{y}^{\prime}\right)
$$

- parity around origin: $\mathcal{P}(0,0) F(u)=F(-u)$
parity around $(\mathfrak{a}, b) \in\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right) \times \mathbb{Q}$

$$
\mathcal{P}(\mathfrak{a}, b)=\mathcal{D}(\mathfrak{a}, b, \mathfrak{c}) \mathcal{P}(0,0)[\mathcal{D}(\mathfrak{a}, b, \mathfrak{c})]^{\dagger}
$$

Parity related to displacements with Fourier tr $\mathcal{P}(\mathfrak{a}, b)=\int_{\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}} d \mathfrak{a}^{\prime} \int_{\mathbb{Q}} d b^{\prime} \mathcal{D}\left(\mathfrak{a}^{\prime}, b^{\prime}, 0\right) \psi\left(2 \mathfrak{a}^{\prime} b-2 \mathfrak{a} b^{\prime}\right)$
operator θ can be expanded as

$$
\theta=\int_{\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}} d \mathfrak{a} \int_{\mathbb{Q}} d b \mathcal{P}(\mathfrak{a}, b,) \operatorname{tr}[\theta \mathcal{P}(\mathfrak{a}, b)]
$$

- Given a pair of functions $g(\mathfrak{y}), f(\mathfrak{y}) \in \mathfrak{S}$

Wigner $\mathcal{W}(\mathfrak{a}, b ; g, f)=(g, \mathcal{P}(\mathfrak{a}, b) f)$
Weyl (or ambiguity) $\widetilde{\mathcal{W}}(\mathfrak{a}, b ; g, f)=(g, \mathcal{D}(\mathfrak{a}, b, 0) f)$

$$
\mathcal{W}(\mathfrak{a}, b ; g, f)=\int_{\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}} d \mathfrak{a}^{\prime} \int_{\mathbb{Q}} d b^{\prime} \widetilde{\mathcal{W}}\left(\mathfrak{a}^{\prime}, b^{\prime} ; g, f\right) \psi\left(2 \mathfrak{a}^{\prime} b-2 \mathfrak{a} b^{\prime}\right)
$$

'marginal properties' of Wigner function

$$
\begin{aligned}
\int_{\mathbb{Q}} d b \mathcal{W}(\mathfrak{a}, b ; g, f) & =\overline{g(-2 \mathfrak{a})} f(-2 \mathfrak{a}) \\
\int_{\mathbb{A}_{\mathbb{e}} / \mathbb{Q}} d \mathfrak{a} \mathcal{W}(\mathfrak{a}, b ; g, f) & =\overline{\widetilde{g}(-b)} \widetilde{f}(-b)
\end{aligned}
$$

'marginal properties' of Weyl function:

$$
\begin{aligned}
\int_{\mathbb{Q}} d b \widetilde{\mathcal{W}}(\mathfrak{a}, b ; g, f) & =\overline{g(\mathfrak{a})} f(-\mathfrak{a}) \\
\int_{\mathbb{A}_{\mathfrak{e}} / \mathbb{Q}} d \mathfrak{a} \widetilde{\mathcal{W}}(\mathfrak{a}, b ; g, f) & =\overline{\widetilde{g}\left(2^{-1} b\right)} \widetilde{f}\left(-2^{-1} b\right)
\end{aligned}
$$

the set of subsystems of $S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$

- supernatural (Steinitz) numbers:

$$
\mathbb{N}_{S}=\left\{\prod p^{e_{p}} \mid p \in \Pi ; \quad e_{p} \in \mathbb{Z}_{0}^{+} \cup\{\infty\}\right\}
$$

examples:

$$
\Omega=\prod_{p \in \Pi} p^{\infty} ; \quad \Omega(\pi)=\prod_{p \in \pi} p^{\infty} ; \quad \Omega(\pi) \mid \Omega
$$

directed partially ordered set
with divisibility as order: $m \prec n$ means $m \mid n$
Ω 'top element'

- directed-complete partial order (dcpo): each chain has a supremum
\mathbb{N}_{S} : dсро
$p, p^{2}, p^{3}, \ldots, p^{\infty}$ has p^{∞} as supremum
$m, m^{2}, \ldots, \Omega[\pi(m)]$ has $\Omega[\pi(m)]$ as supremum
- Topological space ($\mathbb{N}_{S}, T_{\mathbb{N}_{s}}$) with the 'divisor topology' $T_{\mathbb{N}_{S}}$ generated by the base
$B_{\mathbb{N}_{s}}=\left\{\emptyset, U(n) \mid n \in \mathbb{N}_{S}\right\} ; \quad U(n)=\left\{m \in \mathbb{N}_{S}|m| n\right\}$
T_{0} topological space (but not T_{1})
separation axioms: T_{2} (Hausdorff) $\subset T_{1} \subset T_{0}$
- partial order: $\mathbb{N}_{S}:$ dcpo, \mathbb{N} not dcpo topology: \mathbb{N}_{S} : compact, \mathbb{N} locally compact, not compact
\mathbb{N} : something is missing!!
\mathbb{N}_{S} : we found what was missing!!
- subsystem: $S(E, \widetilde{E}) \prec S(G, \widetilde{G})$ if \widetilde{E} subgroup of \widetilde{G}
then quotient relation between E, G with annihilators
- A_{S} : set of subsystems of $S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$
bijective map between A_{S} and \mathbb{N}_{S} :
$S\left[(\mathbb{R} / n \mathbb{Z}), n^{-1} \mathbb{Z}\right] \leftrightarrow n \in \mathbb{N}$
$S\left(\mathbb{S}_{\pi}, \mathbb{Q}^{(\pi)}\right) \leftrightarrow \Omega(\pi)$
$S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right] \leftrightarrow \Omega$
also $A=\left\{S\left[(\mathbb{R} / n \mathbb{Z}), n^{-1} \mathbb{Z}\right] \mid n \in \mathbb{N}\right\}$
bijective map between A and \mathbb{N}
- A_{S} order isomorphic to \mathbb{N}_{S}
embeddings of subsystems into supersystems and their compatibility: quantum states, Heisenberg-Weyl groups, Wigner functions, etc
$S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$ maximum element
$S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]:$ QM on 'large circles'
A not dcpo (something is missing!!)
A_{S} dcpo (we found what was missing!!)
- $\left(A_{S}, T_{A_{s}}\right)$ topological space homeomorphic to $\left(\mathbb{N}_{S}, T_{\mathbb{N}_{s}}\right)$
T_{0}-topology: axioms of T_{0} topology express basic logical relations between subsystems and supersystems
can be used to define continuity of a quantity (eg entropy) in systems and their supersystems
- A locally compact, not compact (something is missing!!)
A_{S} compact (we found what was missing!!)
- $S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$ smallest system that contains all $S\left(\mathbb{S}_{\pi}, \mathbb{Q}^{(\pi)}\right), S\left[(\mathbb{R} / q \mathbb{Z}), q^{-1} \mathbb{Z}\right]$ as subsystems
details for $S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$: work in progress
details for $S[\widehat{\mathbb{Z}},(\mathbb{Q} / \mathbb{Z})]$:
A. Vourdas JMP53, 122101 (2012)
A. Vourdas JPA46 (2013) 043001

Discussion

- The Schwartz-Bruhat space for $S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$
- examples: $S\left(\mathbb{S}_{\pi}, \mathbb{Q}^{(\pi)}\right), S\left[(\mathbb{R} / n \mathbb{Z}), n^{-1} \mathbb{Z}\right]$
- Heisenberg-Weyl group and other phase space methods in $\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right) \times \mathbb{Q}$
- partial order and topology of the set of subsystems of $S\left[\left(\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}\right), \mathbb{Q}\right]$ directed complete partial order topology: compact QM on large circles $\mathbb{R} / n \mathbb{Z}$

