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Associative memory and Hopfield model

Associative memory and Hopfield model

I Associative memory (AM) is the ability of humans of remembering an
information starting from a partial knowledge of it. For example,
remembering the entire title of a film knowing only a part of it.

I The first question is to learn patterns and to conserve them, i.e. learning
and storage.

I Once some patterns have been learned and stored the important ability is
to retrieve them.

I In the past time a lot of work, both theoretical and experimental, has been
done to construct models of associative memory.

I The important feature of these models is a measure of the retrieval and
storage. The models are built with a number N of units, called neurons,
and a number P of information called patterns. This measure is called
capacity and is defined as the ratio

α =
P
N (1)
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Associative memory and Hopfield model

Associative memory and Hopfield model

I The first attempt to simulate the behaviour of human long-term memory
was the Hopfield model (Hopfield, 1982). The units were called neurons
since their functioning was mimicking the evolution of real neurons, the
set of N neurons was called neural network.

I The neurons were represented as an idealized two-state devices
(McCulloch and Pitts, 1943) coupled through a symmetrical matrix Jij
that represents the synapses. Real neurons are coupled through very thin
tubes called dendrites which end on the membrane of the neuronal cell in
a structure called synapsis.

I The learning process is a particular evolution of the synaptic matrix Jij,
often a stochastic process, which makes the matrix to converge to some
definite matrix which allows the retrieval of the information. The learning
process is called supervised if the evolution is controlled by some external
factor, unsupervised if there is no form of external control during the
evolution.
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Associative memory and Hopfield model

Definitions

Here we summarize the basic assumptions and definitions of the Hopfield
model.

I The all-or-none firing of a neuron is represented by a variable Si taking
two values: Si = +1 (firing), Si = −1 (rest). There are N of such
variables. A configuration of the system is a collection of these variables
S ≡ (S1, S2, . . . , SN).

I The dynamics of a neuron is a stochastic threshold dynamics:

Si(t + 1) = sgn hi(t) (2)

hi(t) =

N∑
j, j 6=i

JijSj(t) (3)

I A pattern of activity, ξµ, of a network of N neurons is represented by a set
of i.i.d.r.v. {ξµi = ±1}, i = 1, . . . ,N, that lies at the corners of an N
dimensional hypercube . There are P patterns ξµ to store and retrieve,
µ = 1, . . . ,P.
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Associative memory and Hopfield model

Definitions

I Two patterns of activity, µ and ν, may be compared through their overlap:

〈µ|ν〉 =
1
N

N∑
i=1

ξµi ξ
ν
i (4)

I The overlap mµ of a pattern ξµ with a configuration S is a measure of the
retrieval of the stored information in the network

mµ =
1
N

N∑
i=1

ξµi Si (5)
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Associative memory and Hopfield model

Definitions

I During learning the Jij are modified by the system. A set of p patterns
{ξµi }, i = 1, . . . ,N, µ = 1, . . . ,P, is embedded in the Jij ’s, via the
Hebbian learning rule

Jij =
1
N

p∑
µ=1

ξµi ξ
µ
j (6)

The learning process of the Hopfield model is a supervised process.
I The patterns are memorized in the sense that each pattern ξµ is a fixed

point of the dynamics.

The result of the investigations made by Hopfield (1982); Amit et al. (1985)
was that there is critical value of the capacity αc such that all the overlap
parameters are zero for α > αc . The value found was αc ∼ 0.134
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Classes of patterns and ultrametricity

Classes of patterns and ultrametricity

The memorization and retrieval of information is easier if one uses the classes.

Classes are like the atoms of the partition of a finite set and the single pattern
is an element of the atom.

The hierarchical structure of the patterns is thus well described using the
ultrametric distance in an ultrametric space.

Marc Krasner (1912–1985) invented this word in a note presented at the
French Academy of Sciences on October 23, 1944, entitled “Nombres
semi-réels et espaces ultramétriques”.

Daniela Bianchi, Marco Piersanti, Brunello Tirozzi Department of Physics – Sapienza University of Rome
Storage and retrieval of ultrametric patterns in a network of CA1 neurons of the hippocampus



Models of AM Ultrametric patterns Deviations from ultrametricity Neuronal models AM in the hippocampus Our work References

Classes of patterns and ultrametricity

Classes of patterns and ultrametricity

The ultrametric inequality is the inequality:

d (A,C) ≤ max {d (A,B), d (B,C)} (7)

A distance that satisfies the ultrametric inequality is called an ultrametric
distance. A space endowed with an ultrametric distance is called an ultrametric
space.

The problem is then to organize the patterns in such a way that they are
divided in classes and elements of the classes, and distinguish among them by
means of a distance, which is the ultrametric distance.

The aim is to construct patterns which have an ultrametric structure and such
that they can be used for storage and retrieval in a network of real neurons.
There are many ways to organize patterns in an ultrametric space.
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Multi-ancestors in the Hopfield model

Definitions

Ancestors
p patterns {ξµ = ±1} with µ = 1, . . . , p, ξµ being IIDRV.

Descendants
Each ancestor has q descendants {ξµ,ν}.
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Multi-ancestors in the Hopfield model

Multi-ancestors and two levels

Pattern

ξµ,νi = ξµi η
µ,ν
i (8)

with
Pr(ηµ,ν = ±1) =

1
2 (1± aµ) (9)

I Two patterns in the same bunch have distances < 1 (aµ < 1)

〈µ, ν|µ, λ〉 ≡ 1
N

N∑
i=1

ξµ,νi ξµ,λi =
1
N

N∑
i=1

ηµ,νi ηµ,λi = a2µ (10)

I Two patterns in different bunches have distance equal to 1

〈µ, ν|ρ, λ〉 = 0 (11)
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Multi-ancestors in the Hopfield model

Properties
The synaptic matrix that stabilises these patterns is

Tij =
1
N

p∑
µ=1

ξµi ξ
µ
j

(
1 +

1
∆

qµ∑
ν=1

(ηµ,νi − aµ)(ηµ,νj − aµ)

)
(12)

I When ∆ = 1− a2, the degeneracy between parents and descendants sets
in. The storage capacity is the familiar α ≈ 0.15, where α refers to the
total number of memorized pattern, i.e.

αN = p +

p∑
µ=1

qµ (13)

All these states become attractors.
I If ∆ > 1− a2 the degeneracy is lifted and the parents become lower in

energy than the descendants.
I The total storage capacity remains the same, but the ancestors appear

first, at higher loading levels, and then the detailed descendants become
retrieval states at lower loading levels.
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Indexed hierarchies

Indexed hierarchies

Let E be a finite set. A hierarchy Ĥ on E is a special set of partitions of E ,
Ĥ(E), such that
i) E ∈ Ĥ(E);
ii) each single element a ∈ E belongs to Ĥ(E), i.e. the atoms of the

partitions can be also single elements, (singleton);
iii) for each pair of partitions r , r ′ ∈ Ĥ, such that r ∩ r ′ 6= 0 =⇒ r ⊂ r ′ or

r ′ ⊂ r

An indexed hierarchy on E is a pair {Ĥ, f } where Ĥ is a given hierarchy on E
and f is a positive function satisfying the following conditions
i) f (a) = 0 if and only if a is a single element of E (a singleton);
ii) if a ⊂ a′ then f (a) < f (a′).
f corresponds to the index of the levels of the hierarchies introduced in the
Markov chain approach.
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Indexed hierarchies

Definition of the distance

The distance among two subsets of E is

δ(a, b) = min{d(x , y) | x ∈ a, y ∈ b} (14)

Example: trivial ultrametric
If E : E = ∪i Ei , then d(x , x) = 0, d(x , y) = 1 if x ∈ Ei , y ∈ Ej (i 6= j), and
d(x , y) = a if i = j, 0 < a < 1.
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Indexed hierarchies

Hierarchies and ultrametrics

Associated with each indexed hierarchy {Ĥ(E), f } on E is the following
ultrametric:

σ(x , y) = min
a∈Ĥ(E)

{f (a) | x ∈ a, y ∈ a} (15)

This means that the distance σ(x , y) between two elements x and y in E is
given by the index of the smallest element in Ĥ(E), which contains both x and
y (rule of the closest common ancestor).

The measure of approximation of the measure d (proximity index) is

∆0(d , δ) = max
x,y∈E

|d(x , y)− δ(x , y)| (16)

Our goal is then to find the best approximating δ(x , y) of d(x , y).
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Indexed hierarchies

Subdominant ultrametric

Limit the search on a subset of U (the set of all the ultrametrics on E).

U s = {δ ∈ U | δ ≤ d} (17)

Definition
The subdominant ultrametric d s is defined as the upper limit of U s . This is the
maximal element in U s , and by definition

d s(x , y) = max{δ(x , y) | δ ∈ U , δ ≤ d} (18)

∆(d , d s) = min{∆(δ, d) | δ ∈ U , δ ≤ d} (19)

We use the Minimum-Spanning-Tree (MST) construction method (Murtagh,
1983; Prim, 1957).
Note that the although the MST is not uniquely defined, d s is unique.

Daniela Bianchi, Marco Piersanti, Brunello Tirozzi Department of Physics – Sapienza University of Rome
Storage and retrieval of ultrametric patterns in a network of CA1 neurons of the hippocampus



Models of AM Ultrametric patterns Deviations from ultrametricity Neuronal models AM in the hippocampus Our work References

Indexed hierarchies

Subdominant ultrametric
If A is a MST on E , the distance d s(x , y) between two elements x and y in E
is given by

d s(x , y) = max{d(wi ,wi+1), i = 1, . . . , n − 1} (20)

where {(w1,w2), (w2,w3), . . . , (wn−1,wn)} denotes the unique chain in A,
between x and y (w1 = x , wn = y).
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Indexed hierarchies

Examples

Distorsion index

D = 1−
∑

x,y∈E d
s(x , y)∑

x.y∈E d(x , y)
(21)

d is the input metric on E , d s is the associated subdominant ultrametric.

In general, 0 ≤ D ≤ 1, vanishes if d is already an ultrametric (i.e., d s = d) and
provides a quantitative measure of ultrametricity.

Take E = {x1, . . . , xn}, xi ∈ R and d(xi , xj) = |xi − xj | is the usual Euclidean
metric. If xi = i , then the MST is the set of edges going from xi to
xi+1 → d s(xi , xj) = 1: all triangles are equilateral. It can be shown that for
large n

D ' 1− 3
n + 1 ∼ 1 (22)

Euclidean spaces are far from being ultrametric spaces.
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Indexed hierarchies

Examples

Let E be a set P binary words of N bits each, taken randomly from among the
2N possible words. The distance among two words ξ1 = (ξ11 , . . . , ξ

1
N),

ξ2 = (ξ21 , . . . , ξ
2
N) is the Hamming distance

d(ξ1, ξ2) =

N∑
i=1

| ξ1i − ξ2i | (23)

I for P = 2N , d s reduces to the trivial ultrametric and
DN (x = 1) = 1− 2/N ∼ 1 at large N where x = P/2N is the filling factor
of the hypercube of all the configurations {0, 1}N .

I For fixed but large N numerical calculations show that DN approaches
zero as x goes to zero. This means that if the number of patterns is small
(10 or 20) and the dimension of the vector is 100 we have ultrametricity.
Ultrametricity holds in the case of large spaces (sparse coding).

I This is our case with the patterns of the CA1 neural network.
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Space of partitions as an ultrametric space

Basic definitions

Here we follow the ideas of Lerman (1981).

Partition
Let E be a finite set. A partition of E is a set of disjoint subsets of E such that
their union is E , the classes of the partition being the subsets.

Let us consider an example: E = {a, b, c, d , e, f , g}
A partition of E is {

{a, b, c, d} , {e, f } , {g}
}

while the classes of the partitions are

{a, b, c, d} , {e, f } , {g}

We will indicate with P̂(E) the set of the partitions of E , P being a generic
partition.
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Space of partitions as an ultrametric space

Basic definitions

Two elements of E are equivalent if they belong to the same class of the
partition P.
The graph of an equivalence relation induced by P is indicated with Gr(P),

Gr(P) = {(x , y) | x ∈ E , y ∈ E and xPy} (24)

Gr(P) is a subset of E × E . This inclusion allow us to define an ordering in P̂.

a

b

c

d

e

f

g

a b c d e f g
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Space of partitions as an ultrametric space

Ordering
P < P ′ if Gr(P) < Gr(P ′) or if, ∀x , y ∈ E , xPy =⇒ xP ′y .

For example the partition {
{a, b, c, d} , {e, f } , {g}

}
is smaller than the partition{

{a, b, c, d} , {e, f , g}
}

P̂(E) is an ordered set with the structure of a lattice in the sense that for any
pair of partitions there is a “greatest smaller” partition P ∧ P ′ and a “smallest
greater” partition P ∨ P ′. The partition P ∧ P ′ is defined by its graph

Gr(P ∧ P ′) = Gr(P) ∧ Gr(P ′) (25)

x(P ∧ P ′)y if and only if xPy and xP ′y . On the other hand, Gr(P ∨ P ′) is the
smallest graph containing the set Gr(P) or Gr(P ′).
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Space of partitions as an ultrametric space

Example

Consider the same partition P introduced before and a new one P ′:

P =
{
{a, b, c, d} , {e, f } , {g}

}
P ′ =

{
{a, b} , {c, d} , {e, f , g}

}
P ∧ P ′ =

{
{a, b} , {c, d} , {e, f } , {g}

}
P ∨ P ′ =

{
{a, b, c, d} , {e, f , g}

}
The classes of the smallest partition of P̂ are the single elements of E , the
largest is the set {a, b, c, d}. We show the example of lattice constructed
starting from the set of four elements.
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Space of partitions as an ultrametric space

Example

{a, b, c, d}

{a, b, c, d}

{abc, d} {ab, cd} {acd, b} {ad, bc} {abd, c} {ac, bd} {bcd, a}

{ab, c, d} {cd, a, b} {ad, b, c} {bc, a, d} {ac, b, d} {bd, a, c}
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Space of partitions as an ultrametric space

Chain of partitions and ultrametric spaces

Let (E , d) be a metric space with a finite number of elements. A divisor of E is
an equivalence relation D in E such that

∀a, b, x , y ∈ E aDb and d(x , y) ≤ d(a, b) =⇒ xDy (26)

We can associate to each sequence of increasing lattices of partitions of E ,
P̂(E), an ultrametric space. That is, if we consider a finite sequence of
partitions of E , Pi , with Pi < Pi+1, these partitions decrease their fineness as i
increase.

We define the distance function d(x , y) : E × E → I ⊂ N as the smallest i such
that x , y belong to the same class Pi . I is a finite set of integers. Thus defined,
d has the following property.

d is an ultrametric distance on E such that the divisors are the Pi . The inverse
also holds.
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Space of partitions as an ultrametric space

Definitions

The relations among the various classes of the partitions and the elements of
these classes are described in general terms which we have to define for the
sake of clarity. For any two objects in the finite space E we have defined a
distance among them. Based on this definition, we introduce some general
binary relations among the pairs.

i) a binary relation on E is a preorder if it is reflexive and transitive;
ii) a binary relation on E is an equivalence relation if it is reflexive, transitive

and symmetric;
iii) a binary relation on E is an order if it is reflexive, transitive and

antisymmetric;
iv) a binary relation is called total if it holds for all the pairs (i , j) ∈ E × E , or

partial otherwise.
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Space of partitions as an ultrametric space

Ultrametric preorder
A preorder can be associated to a set of partitions organized in a lattice P̂(E).
Let F be the set of all pairs of elements in E . The distance d defines a total
preorder in F :

∀{(x , y), (z, t)} ∈ F : (x , y) ≤ (z, t) ⇐⇒ d(x , y) ≤ d(z, t) (27)

The preorder is indicated with ω. Two distances on a given set E are equivalent
if the preorderings associated with each of them on E are identical. A total
preorder is equivalent to a partition which defines an equivalence relation on F ,
and to a total order on the set of classes.

A preorder ω is called ultrametric if

∀x , y , z ∈ E : ρ(x , y) ≤ r , ρ(y , z) ≤ r =⇒ ρ(x , z) ≤ r

ρ(x , y) is the rank of the pair, for ω defined by the non-decreasing values of the
distance d in E .

A necessary and sufficient condition for a distance d to be ultrametric is that
the associated preordering is ultrametric.
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Space of partitions as an ultrametric space

Difference between preorder and ultrametric preorder
It is possible to introduce a quantity which measures the degree of
ultrametricity starting from these definitions. Let J be the set of all the triplets
(x , y , z) of elements of E . Consider the application τ of J in F that, given
(x , y , z) and the preorder ω, associates to them the open interval
]M(x , y , z), S(x , y , z)[, which are respectively the median and the maximum
among the three couples (x , y), (y , z) and (z, x).

We just say that a triplet (x , y , z) for which (x , y) ≤ (y , z) ≤ (x , z), given the
preordering ω, is such that the interval ](y , z), (x , z)[ is empty if ω is
ultrametric. Considering such a triplet, the preorder ω is less and less
ultrametric as the cardinality of ](y , z), (x , z)[ become bigger. To take into
account the set J of all the triplets, we may adopt as a measure of the
discrepancy between ω and an ultrametric preorder:

H(ω) =
1
|J |
∑
J

∣∣]M(x , y , z), S(x , y , z)[
∣∣

|F | (28)

where we have normalized with number of the triples |J | and with the number
of the pairs |F |.
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Space of partitions as an ultrametric space

Example

Let E = {a, b, c, d , e}, and ω the preorder on E

{a, d} = {a, c} < {a, e} < {c, e} < {b, d} = {c, d} < {b, c}
< {d , e} < {a, b} < {b, e}

J \ F (a,d) (a,c) (a,e) (c,e) (b,d) (c,d) (b,c) (d,e) (a,b) (b,e)

(a,b,c) • • × •
(a,b,d) • • × × •
(a,b,e) • • •
(a,c,d) • • × × •
(a,c,e) • • •
(a,d,e) • • × × × × •
(b,c,d) • • •
(b,c,e) • • × × •
(b,d,e) • • × •
(c,d,e) • • × •
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Space of partitions as an ultrametric space

Example

In the table we reported on the rows the set of the triples J and on the
columns the set of the pairs F . On each row, a “•” indicates the pairs
contained in the triple and a “×” the pairs which are strictly between the
median and the maximum. If there are no crosses the median and the
maximum are in the same class and the preordering is ultrametric, hence
H(ω) = 0. Summing the number of crosses for the pairs which are strictly
included between some median and maximum one obtains a quantitative
measure of the deviation of (E , ω) from the ultrametric preordering.

H(ω) is a more reliable measure of the deviation from ultrametricity than the
the distortion index of the subdominant metric introduced before because the
subdominant metric can be very different from the metric d .
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Space of partitions as an ultrametric space

Comments

The structure of H(ω) suggests to define a measure on the space F introducing
the number of pairs in F which are strictly included in the interval
]M(x , y , z),S(x , y , z)[. Given any pair p ∈ F , we define the subset Jp of J such
that, for any triple {x , y , z} ∈ Jp, p is strictly included in the interval
]M(x , y , z), S(x , y , z)[. It is possible then to define a measure mp on the space
of pairs F such that for any p ∈ F

mp =
|Jp|
|J | .

For any preorder ω we can then define the vector D(ω) as the set of mp, p ∈ F .
If the preorder is ultrametric this vector has all the components equal to 0.
Thus the number of components of D(ω) which are different from zero and
also the values of these components are a measure of the deviation from
ultrametricity of the preorder ω.
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Space of partitions as an ultrametric space

Comments

In this example we have that

H(ω) =
13

10× 10

D(ω) = (0.3, 0.3, 0.2, 0.2, 0.1, 0.1, 0.1, 0, 0, ...)

For large n, the number of elements of E , and for a large sample Q of sets of
triples J obtained by generating the triples with uniform probability. We have
that the H(ω) has a gaussian distribution since is the sum of indipendent
uniformly distributed random variables:

H ′(ω) =
1
|Q|

∑
{x,y,z}∈Q

Λ(x , y , z) (29)

where Λ(x , y , z) is the cardinality of ]M(x , y , z), S(x , y , z)[.
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Space of partitions as an ultrametric space

A neuronal example

Consider a set of 6 patterns, organized in a hierarchy as described in the
Hopfield model section, with 2 ancestors and 2 descendants for each ancestor.
Then we can calculate the quantities so far introduced.
Minimum -spanning -tree

2 -> 0 : 12
0 -> 1 : 14
1 -> 5 : 47
5 -> 3 : 17
3 -> 4 : 14

Deviation from ultrametricity ( Rammal index ): -0.00788955
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Space of partitions as an ultrametric space

A neuronal example

Preorder \ omega

(0 ,1): 14
(0 ,2): 12
(0 ,3): 47
(0 ,4): 47
(0 ,5): 47
(1 ,2): 14
(1 ,3): 47
(1 ,4): 47
(1 ,5): 47
(2 ,3): 47
(2 ,4): 47
(2 ,5): 47
(3 ,4): 14
(4 ,5): 17

--> (0 ,2) <(0 ,1) =(1 ,2) =(3 ,4) <(4 ,5) =(0 ,3) =(0 ,4) =(0 ,5) =(1 ,3) =(1 ,4) =(1 ,5) =(2 ,3)
=(2 ,4) =(2 ,5) =(3 ,5)
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Space of partitions as an ultrametric space

J \ F (0,2) (0,1) (1,2) (3,4) (4,5) (0,3) (0,4) (0,5) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,5)
(0,1,2) • • •
(0,1,3) • • – – •
(0,1,4) • • – – •
(0,1,5) • • – – •
(0,2,3) • • – – – – – •
(0,2,4) • • – – – – – •
(0,2,5) • • – – – – – •
(0,3,4) • • •
(0,3,5) • • – – – – – – •
(0,4,5) • • •
(1,2,3) • • – – •
(1,2,4) • • – – •
(1,2,5) • • – – •
(1,3,4) • • •
(1,3,5) • • – – – •
(1,4,5) • • •
(2,3,4) • • •
(2,3,5) • • •
(2,4,5) • • •
(3,4,5) • • – – – – – – – – – •

Deviation from ultrametricity ( Lerman ’s H(\ omega )): 0
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The Hodgkin-Huxley model

The Hodgkin-Huxley model

neuron ion inside concentration (mmole) outside concentration (mmole)
squid axon K+ 410 10
squid axon N+

a 49 460
squid axon Cl−− 40 540

cat spinal neuron K+ 150 5.5
cat spinal neuron N+

a 15 150
cat spinal neuron Cl−− 9 125

V =
RT
F log

[
PK [K ]o + PNa[Na]o + PCl [Cl ]i
PK [K ]i + PNa[Na]i + PCl [Cl ]o

]
(30)

C dV
dt = gNa(V − Va) + gK (V − VK ) + gCl(V − VCl) (31)

gNa = gNam3h (32)
gK = gKn4 (33)
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The Hodgkin-Huxley model

The Hodgkin-Huxley model

dm
dt = αm(1−m)− βmm

dh
dt = αh(1− h)− βhh

dn
dt = αn(1− n)− βnn

m(t) = m∞ + (m0 −m∞)e−t/τm

h(t) = h∞ + (h0 − h∞)e−t/τh

n(t) = n∞ + (n0 − n∞)e−t/τn

m∞ = αm/(αm + βm)

h∞ = αh/(αh + βh)

n∞ = αn/(αn + βn)

τm = 1/(αm + βm)

τh = 1/(αh + βh)

τn = 1/(αn + βn)
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The Hodgkin-Huxley model

The Hodgkin-Huxley model

αm(V ) =
25− V

10[e(25−V )/10 − 1]

βm(V ) = 4e−V/18

αh(V ) =
7
100e

−V/20

βh(V ) =
1

e(30−V )/10 − 1

αn(V ) =
10− V

100[e(10−V )/10 − 1]

βn(V ) =
1
8e
−V/80

C dV
dt = gNam3h(V − Va) + gKn4(V − VK ) + gCl(V − VCl) + I
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The Hodgkin-Huxley model

Potential and activation parameters for I = 1
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The Hodgkin-Huxley model

Potential and activation parameters for I = 10
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Hippocampal microcircuit

Associative memory in the hippocampus

Mossy fibre (MF) inputs from the dentate gyrus create pyramidal cell (PC)
activity in CA3 that is stored autoassociatively by Hebbian modification of
recurrent collateral synapses between coactive PCs. Patterns of activity in layer
II of entorhinal cortex (EC II) may be heteroassociated with these CA3
patterns. At the same time, CA1 PCs receiving input both from layer III of
entorhinal cortex and from CA3 PCs form a heterassociation with the active
CA3 PCs through Hebbian modification of the Schaffer collateral synapses.
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Hebbian pattern storage and recall

Hebbian pattern storage and recall

The elements of this matrix select the conductance strengths of AMPA
synapses between CA1 and CA3 of the neurons which are active in the
patterns.
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Hebbian pattern storage and recall

Hebbian pattern storage and recall
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Hebbian pattern storage and recall

Hebbian pattern storage and recall

The elements of this matrix select the conductance strengths of AMPA
synapses between CA1 and CA3 of the neurons which are active in the
patterns.

A The individual weight matrices from the individual storage of the patterns
are simply obtained as the outer product of the pattern with itself. The
combined weight matrix is obtained by summing the individual matrices and
then clipping entries to be 0 or 1.
B The cue pattern is multiplied with the weight matrix to give a vector of
weighted input sums. This vector is thresholded to give the recalled binary
vector. With the noiseless cue illustrated here, a suitable threshold is simply
the number of active units in the cue pattern.
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Hebbian pattern storage and recall

Hebbian pattern storage and recall

It is easily seen that the highest sums (3) are all to the cells that belong to the
stored cue pattern. Some other cells get a lower input of 1, since the two
stored patterns overlap with each other. Recall proceeds by applying an activity
threshold, and in this case a threshold of 3 is appropriate. The final output
activity vector is determined by making active (vector entry 1) all those cells
whose input sum is greater than or equal to the threshold i), else the vector
entry is 0. The new output vector after the threshold setting is applied is
[ 1 0 0 0 1 0 0 1 0 0 ]
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Heteroassociative memory in CA1

Heteroassociative memory in CA1

The principal excitatory cells of the CA1 region are pyramidal cells. These cells
are driven by excitatory inputs from layer III of the entorhinal cortex and the
CA3 Schaffer collaterals and an inhibitory input from the medial septum.
Recurrent connectivity between pyramidal cells is negligible in CA1 (less than
1%).

Gamma cycles
Gamma frequency rhythms (30–100 Hz) are assumed to constitute a basic
clock cycle such that patterns of activity for storage and recall correspond to
PCs that are active in a particular gamma cycle.
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Heteroassociative memory in CA1

Heteroassociative memory in CA1
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Heteroassociative memory in CA1

Heteroassociative memory in CA1

Black filled triangles: pyramidal cells. Grey filled circles: CA1 inhibitory
interneurons. EC: entorhinal cortex input; CA3: CA3 Schaffer collateral input;
AA: axo-axonic cell; B: basket cell; BS: bistratified cell; OLM: oriens
lacunosum-moleculare cell; SLM: stratum lacunosum-moleculare; SR: stratum
radiatum; SP: stratum pyramidale; SO: stratum oriens. Open circles: Septal
GABA inhibition. From Cutsuridis et al. (2010).
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Heteroassociative memory in CA1

The CA1 network

The network contains 100 pyramidal cells (PC), 2 basket cells (BC), 1
bistratified cell (BSC), 1 axo-axonic cell (AAC) and 1 oriens
lacunosum-moleculare (OLM) cell. All cell morphologies included a soma,
apical and basal dendrites and a portion of axon (Poirazi et al., 2003a,b;
Saraga et al., 2003; Santhakumar et al., 2005).

Synaptic properties
In the model, AMPA, NMDA, GABAA and GABAB synapses are considered.
GABAA is present in all strata, whereas GABAB is present in medium and distal
SR and SLM dendrites. AMPA synapses are present in strata LM (EC
connections) and radiatum (CA3 connections), whereas NMDA are present
only in stratum radiatum (CA3 connections).
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Heteroassociative memory in CA1

The CA1 network

Model inputs
Inputs to the CA1 model come from the medial septum (MS), entorhinal cortex
(EC) and CA3 Schaffer collaterals. The EC input is modelled as the firing of 20
entorhinal cortical cells at an average gamma frequency of 40Hz (spike trains
only modelled and not the explicit cells), and the CA3 input is modelled with
the same gamma frequency spiking of 20 out of 100 CA3 pyramidal cells. PCs,
BCs, AACs, BSCs received CA3 input in their medial SR dendrites, whereas
PCs, BCs and AACs received also the EC layer III input in their apical LM
dendrites. EC inputs preceded CA3 inputs by 9ms on average (Soleng et al.,
2003). MS input, which is modelled as the rhythmic firing of 10 septal cells,
provides GABAA inhibition to all interneurons in the model (strongest to BC
and AAC; Freund and Antal (1988)). MS input is phasic at theta rhythm and
is on for 125ms during the retrieval phase.
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Heteroassociative memory in CA1

The CA1 network

Presynaptic GABAB inhibition
It has been shown that the strengths of the synaptic inputs from the EC
perforant path and the CA3 Schaffer collaterals wax and wane according to the
extracellular theta rhythm and 180◦ out of phase from each other (Wyble et al.,
2000). These cyclical theta changes are likely due to the presynaptic GABAB
inhibition to CA3 Schaffer collateral input to CA1 PCs’ synapses, which is
active during the storage cycle and inactive during recall (Molyneaux and
Hasselmo, 2002). This is modelled simply as a reductive scaling during storage
of the CA3-AMPA synaptic conductance, so that the effective conductance g ′ is

g ′ = gs · g (34)

where gs is the scaling factor (set to 0.4 in the presented simulations). During
recall, g ′ is simply equal to g (the AMPA conductance determined by the
connectivity weight matrix).
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Heteroassociative memory in CA1

Pattern recall in CA1

Hasselmo et al. (2002a,b) have hypothesized that the hippocampal theta
rhythm (4–7 Hz) contributes to memory formation by separating storage and
recall into different functional subcycles. Recent experimental evidence has
shown that different types of inhibitory interneurons fire at different phases of
the theta rhythm (Klausberger et al., 2004; Somogyi and Klausberger, 2005;
Klausberger and Somogyi, 2008). Here, we demonstrate how the recall
performance of previously stored patterns is affected by the presence/absence
of various types of inhibitory interneurons, which fire at different phases of the
simulated theta rhythm (Paulsen and Moser, 1998).
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Heteroassociative memory in CA1

Pattern recall in CA1

As detailed previously, a set of patterns are stored by generating a weight
matrix based on a clipped Hebbian learning rule, and using the weight matrix
to prespecify the CA3 to CA1 PC connection weights. To test recall of a
previously stored pattern, the associated input pattern is applied as a cue in the
form of spiking of active CA3 inputs (those belonging to the pattern)
distributed within a gamma frequency time window. The entire cue pattern is
repeated at gamma frequency (40Hz). At the same time, 20 EC inputs also
fire randomly distributed within a 25ms gamma window, but with mean
activity preceding the CA3 activity by 9ms. The CA3 spiking drives the CA1
PCs plus the B, AA and BS interneurons. The EC input also drives the B and
AA interneurons.
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Heteroassociative memory in CA1

Pattern recall in CA1

To test pure recall by the CA3 input cue, the EC input is disconnected from the
CA1 PCs and no learning takes place at CA3 synapses on CA1 PCs. The CA3
synapses are suppressed during the “storage” phase of theta. Pattern recall
only occurs during the “recall” half-cycle. Typical firing patterns of the
different cell types across theta cycles are illustrated in figure.
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Heteroassociative memory in CA1

Pattern recall in CA1
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Heteroassociative memory in CA1

Pattern recall in CA1

The recall of the first pattern in a set of five is shown in the following figure.

The top subfigure shows a raster plot of the spiking of the septal (top 10
rows), EC (next 20 rows) and CA3 (bottom 100 rows) inputs. The remaining
subplots show raster plots of CA1 PC activity for different configurations of
network inhibition.
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Heteroassociative memory in CA1

Pattern recall in CA1
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Materials and methods

Network architecture

All simulations were performed using NEURON (Hines and Carnevale, 1997)
running on a cluster of 8 nodes with MPI (Message Passing Interface).

The model consists of 100 pyramidal (P) cells, 2 basket (B) cells, 1 bistratified
(BS) cell, 1 axo-axonic (AA) cell, and 1 oriens lacunosum moleculare (OLM)
cell.
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Materials and methods

Network architecture
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Materials and methods

Network architecture

Arrows stands for excitatory synapses, circles for inhibition. P1...P100: pyramidal
cells. EC1...EC20: entorhinal cortex input; CA31...CA3100: CA3 Schaffer
collateral input; OLM: oriens lacunosum-moleculare cell; BSC: bistratified cell;
BC: basket cell; AAC: axo-axonic cell; Sep: Septal GABA inhibition.

Each kind of interneuron has a specific function in modulating not only the
overall network functions, but also the I/O properties of the principal neurons
(the CA1 pyramidal neurons) and, especially, the synaptic plasticity processes
leading to memory storage. For the OLM, BC, BSC and AAC the models
defined for the networks of Cutsuridis et al. (2010) are employed. The CA1
model employed, instead, has the same morphology of the CA1 template used
by Cutsuridis et al. (2010) but different distributions of the ionic currents.
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Materials and methods

Voltage response of the different neurons of the network

(a) Pattern pyramidal cell

(b) Axo-axonic cell

(c) Basket cell

(d) Bistratified cell

(e) OLM cell
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Compartmental structure models for the different cell types
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Synaptic plasticity

Recent results have elaborated on the timing dependence of LTP by showing
that long-term plasticity depends critically on the millisecond timing of pre-
and postsynaptic spikes. Typically, if the presynaptic cell fires an AP a few
milliseconds before the postsynaptic cell, LTP is produced, whereas the
opposite temporal order results in LTD, a notion called spike timing-dependent
plasticity (STDP). Interestingly, the rules of STDP vary widely within brain
region, cell, and synapse type.

During storage an STDP learning rule (based on the experimental findings by
Nishiyama et al. (2000)) was applied at CA3-AMPA synapses on P cells medial
SR dendrites, where presynaptic CA3 input spike times were compared with the
postsynaptic voltage response to determine an instantaneous change in the
peak synaptic conductance.
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Synaptic plasticity

gpeak(t) = g0
peak + A(t) (35)

with

A(t) =

 A(t − 1)

(
1− d e(∆t−Md )2/2V2

d
Vd
√
2π

)
if ∆t < 0

A(t − 1) +
(
gmax
peak − g0

peak − A(t − 1)
)
p e−∆t/τp if ∆t > 0

(36)

where ∆t = tpost − tpre. Md = −22ms, Vd = 5ms, τp = 10ms are set in order
to reproduce the critical time window found by Nishiyama et al. (2000), g0

peak is
the initial peak conductance, gmax

peak is the maximum value which g can reach.
The parameters p and d are chosen in such way that, in the same time of the
protocol of Nishiyama et al., i.e. 16ms, the conductance peak of synapses
under plasticity lies in a range near to maximum value.
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Materials and methods

Synaptic plasticity

In addition, during storage the CA3-AMPA synaptic conductance suppression
by the putative GABAB inhibition present during this phase was implemented
simply by scaling so that effective conductance g ′ was:

g ′ = gs × g (37)

where gs is the scaling factor (set to 0.4). During recall, g ′ was simply equal to
g .
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Preliminary results

Here we show the recall of one of 6 ultrametric patterns (in the sense of the
hierarchy introduced before) stored by the network. This is the case already
described in the preorder example, thus the Rammal index of the deviation from
ultrametricity is −0.0079. The green highlighted areas are the theta half-cycles
in which recall occurs. The red pattern is the input pattern, shown for clarity.
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Preliminary results
(a) Input spikes

(b) Pyramidal cell spikes
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Preliminary results
Here instead we show the recall of one of 6 random patterns stored by the
network, with a Rammal index of deviation from ultrametricity of 0.02.

(a) Input spikes

(b) Pyramidal cell spikes

(c) Recall quality
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