
Wavelets in different structures
p-adic wavelets

Orthogonal p-adic wavelet bases
Non-orthogonal wavelet bases

p-Adic wavelets

M. Skopina

Saint Petersburg State University

M. Skopina p-Adic wavelets



Wavelets in different structures
p-adic wavelets

Orthogonal p-adic wavelet bases
Non-orthogonal wavelet bases

Real wavelets
Haar bases
H-p partitions

Wavelets on R
Wavelet basis on R: {2j/2ψ(2jx − n), j , n ∈ Z}

A. Haar, 1910: ψ(x) =

{
1, if x ∈ (0, 1/2),

−1, if x ∈ (1/2, 1),
suppψ ⊂ [0, 1].

Y. Meyer, S. Mallat, 1988: multiresolution analysis (MRA)

Definition

A collection of closed spaces Vj ⊂ L2(R), j ∈ Z, is called a
multiresolution analysis (MRA) in L2(R), if the following
conditions (axioms) hold:
1. Vj ⊂ Vj+1 for all j ∈ Z; 2.

⋃
j∈Z

Vj = L2(R); 3.
⋂
j∈Z

Vj = {0};

4. f ∈ Vj ⇐⇒ f
(
2−j ·

)
∈ V0 for all j ∈ Z;

5. there exists a function ϕ ∈ V0 such that the sequence
{ϕ(· − n)}n∈Z forms an orthonormal basis for V0.

Each MRA generates an orthonormal wavelet basis for L2(R).
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Haar wavelet function ψ is generated by ϕ(x) = 1[0,1](x).

Meyer wavelets: ψ̂ is compactly supported, in particular,
Kotelnikov-Shannon wavelets which are generated by ϕ(x) = sin πx

πx
(Haar’s untipode).

Daubechies wavelets ( which provided JPEG-2000): ψ is
compactly supported, ψ ∈ C r (R).

The exist orthogonal wavelet bases which are not generated by an
MRA.
Example:

ψ̂ = 1[−4/7,−2/7] + 1[2/7,3/7] + 1[12/7,16/7]
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Haar bases in different structures

W.C. Lang, 1996: Cantor group;

Yu.A. Farkov, 2008: Vilenkin group;

S.Kozyrev, 2002: group of p-adic numbers;

S.F.Lukomskii, 2009-2012: zero-dimension groups;

H.Aimar, A.Bernardis, B.Iaffei, 2007: a class of metric spaces;

S.Evdokimov, 2012: ring of adeles

M. Skopina p-Adic wavelets



Wavelets in different structures
p-adic wavelets

Orthogonal p-adic wavelet bases
Non-orthogonal wavelet bases

Real wavelets
Haar bases
H-p partitions

Cantor group
An abelian locally compact group.
Elements are x = {xk}∞k=−∞, where xk ∈ {0, 1}, and xk 6= 0 for
only a finite number of negative k (interpreted as positive
numbers: x = x−N−12

N + · · ·+ x−12
0 + x02

−1 + x12
−2 + . . . );

coordinate-wise mod 2 addition x + y ;
dilation operator D takes x = {xk}∞k=−∞ to Dx = {xk+1}∞k=−∞
(interpreted as multiplication by 2).

The group of p-adic numbers with p = 2
An abelian locally compact group.
Elements are x = {xk}∞k=−∞, where xk ∈ {0, 1}, and xk 6= 0 for
only a finite number of negative k;
p-adic addition x + y ;
dilation operator D takes x = {xk}∞k=−∞ to Dx = {xk+1}∞k=−∞.
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Cantor group

Haar basis: {2j/2ψ(D jx − a), j ∈ Z, a ∈ I}, where

ψ(x) =

{
1, if x = {xk}∞k=0, x0 = 0,

−1, if x = {xk}∞k=0, x0 = 1,
I = {x = {xk}−1

k=−∞}.

There exist analogs of Daubechies wavelets
W.C. Lang 1996; V. Yu. Protasov and Yu. A. Farkov 2006

The group of p-adic numbers with p = 2

Haar basis: {2j/2ψ(D jx − a), j ∈ Z, a ∈ I}, where

ψ(x) =

{
1, if x = {xk}∞k=0, x0 = 0,

−1, if x = {xk}∞k=0, x0 = 1,
I = {x = {xk}−1

k=−∞}.

Analogs of Daubechies wavelets do not exist!
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Why are Haar bases in various structures the same?

Answer: I. Ya. Novikov and M.S., Mathematical Notes, 91 (2012), no 5-6, 895-898

(Ω,Σ, µ)

Let p = {pj}∞j=−∞ be a sequence of integers, pj > 1. Assume that
there exist collections of sets Ωjn, n ∈ Z+, which are mutually
disjoint for each j ∈ Z, and such that µΩ0n = 1 for every n ∈ Z+,
Ω = ∪nΩjn for every j ∈ Z, and each Ωj−1,n is divided into pj

equimeasured subsets Ωj ,nk
, nk = nk(n, j) ∈ Z.

Collection of such {Ωjn}(j ,n) is called (H,p)-partition.
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Haar bases generated by (H,p)-partition

Let (Ω,Σ, µ) be equipped with a topology τ such that Σ contains
all open sets, the measure µ be regular, and Ω = {Ωjn}(j ,n) be
(H,p)-partition.
Assume that for every x ∈ Ω and for every element U of the base
of neighborhoods of a point x there exists Ωjn containing x and
contained in U.

Given pair (j , n), let Ωj ,n =
pj+1−1⋃
k=0

Ωj+1,nk
,

ψν
jn = Cj+1

pj+1−1∑
k=0

hνk1Ωj+1,nk
, ν = 1, . . . , pj+1 − 1,

where hνk , ν, k = 0, . . . , pj+1 − 1, are entries of a unitary matrix
whose first row consists of elements equal to each other.
The system Ψj ,n :=

⋃
(j ,n)

{ψν
jn, ν = 1, . . . , pj+1 − 1} is a Haar basis

for L2(Ω).
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If τ is defined by a metric, then µ is regular. In this case the
assumption of the theorem is satisfied whenever diameters of
included sets Ωjn containing x tend to zero as j → +∞.
If there exists a dilation operator D : Ω → Ω such that
D−1Ωjn = Ωj+1,n for all n ∈ Z+, then we obtain Haar basis in
traditional form
ψν

jk(x) = Cjψ
ν
0k(D jx), k ∈ Z+, j ∈ Z, ν = 1, . . . , pj+1 − 1.

Similarly, an appropriate sequence of dilation operators Dj : Ω → Ω
such that D−1

j Ωjn = Ωj+1,n for all n ∈ Z+, leads to Haar basis.
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For most Haar bases, it is easy to see that a natural dilation
operator D (or a sequence of dilation operators Dj) provides an
(H,p)-partition.
W.C. Lang, 1996: Cantor group, D : x → 2x

Yu.A. Farkov, 2008: Vilenkin group, D : x → px

S.Kozyrev, 2002: group of p-adic numbers, D : x → x/p

S.F.Lukomskii, 2009-2012: zero-dimension groups, a natural sequence
of Dj

S.Albeverio and S.Kozyrev, 2009: Qd
p , D : x → Ax , where

A =


0 0 . . . 0 p
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .
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Slightly less trivial to see that the operator D : x → Ax , where

D =

(
1 −1
1 1

)
, provides an (H,p)-partition for Q2

p.

E.King and M.Skopina, 2010

It was quite complicated to find dilation operators Dj providing an
(H,p)-partition for the ring of adels
S.Evdokimov, 2012
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Qp is the field of p-adic numbers

Bγ(a) := {x ∈ Qp : |x − a|p ≤ pγ}, a ∈ Qp, γ ∈ Z.

Zp := B0(0) is the ring of p-adic integers;
Zp :=

{
x ∈ Qp : x = [x ] := x − {x}

}
Ip :=

{
x ∈ Qp : x = {x}

}
(I2 = {0, 1

2 ,
1
4 ,

3
4 ,

1
8 , ...})

Ip is a natural set of translations because

Qp =
⋃
a∈Ip

B0(a) =
⋃
a∈Ip

(Zp + a)
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We consider complex-valued function f defined on Qp.

A function f defined on Qp is called periodic if there exists
m ∈ Z such that f (x + pm) = f (x) for every x ∈ Qp.

D denotes the set of compactly supported periodic functions
(so-called test functions). The space D is an analog of the
Schwartz space in the real analysis.

Since Qp is a locally compact abelian group with a compact
open subgroup, there exists a Haar measure dx on Qp, and
the corresponding space L2(Qp).
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χp(t) = e2πit := e2πi{t}p are the additive characters of Qp,

The Fourier transform of ϕ ∈ D is defined by the formula

ϕ̂(ξ) :=

∫
Qp

χp(ξ · x)ϕ(x) dx .

One extends the Fourier transform onto L2(Qp) in the
standard way.

Interesting fact: ϕ = 1B0(0) = ϕ̂

ϕ ∈ D if and only if both the functions ϕ, ϕ̂ are compactly
supported.

ϕ is pm-periodic if and only if supp ϕ̂ ⊂ Bm(0).
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ϕ̂(ξ) :=

∫
Qp

χp(ξ · x)ϕ(x) dx .

One extends the Fourier transform onto L2(Qp) in the
standard way.

Interesting fact: ϕ = 1B0(0) = ϕ̂

ϕ ∈ D if and only if both the functions ϕ, ϕ̂ are compactly
supported.

ϕ is pm-periodic if and only if supp ϕ̂ ⊂ Bm(0).
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p-Adic Haar basis

p−j/2ψ(ν)(pjx − a), j ∈ Z, a ∈ Ip, ν = 1, . . . , p − 1,

where ψ(ν)(x) = χp(νx/p)1B0(0)(x).

Kozyrev, S.V. Wavelet analysis as a p-adic spectral analysis, Izvestia Akademii Nauk,

Seria Math., 66 (2002), no. 2, 149–158.

(H,p)-partition

Ω = Qp, pj = p;

Ω0n = B0(an) = Zp + an, where {an}∞n=1 = Ip;

Ωjn = D−1Ωj−1,n, where D−1 : x −→ px ;

{hνk}p−1
ν,k=0 = {e2πiνk}p−1

ν,k=0.
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Definition

A collection of closed spaces Vj ⊂ L2(Qp), j ∈ Z, is called a
multiresolution analysis (MRA) in L2(Qp) if the following axioms
hold
(a) Vj ⊂ Vj+1 for all j ∈ Z;
(b)

⋃
j∈Z Vj is dense in L2(Qp);

(c)
⋂

j∈Z Vj = {0};
(d) f (·) ∈ Vj ⇐⇒ f (p−1·) ∈ Vj+1 for all j ∈ Z;

(e) there exists ϕ ∈ V0 such that V0 = span {ϕ(x − a), a ∈ Ip}.

The function ϕ from axiom (e) is called scaling. If, moreover, the
system {ϕ(x − a), a ∈ Ip} is an orthonormal basis for V0, then ϕ is
called orthogonal scaling function.
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Theorem

There exists an MRA generated by an orthogonal scaling function.

V. M. Shelkovich and M. S., p-Adic Haar multiresolution analysis and

pseudo-differential operators, J. Fourier Analysis and Appl., 15 (2009), N 3, 366-393

This MRA (Haar MRA) is generated by the scaling function is
ϕ = 1B0(0).

Define the Haar wavelet spaces Wj , j ∈ Z, by Vj ⊕Wj = Vj+1.
Due to axioms (a), (b), (c), L2(Qp) =

⊕
j∈Z

Wj .

The functions ψ(ν)(x) = χp(νx/p)1B0(0)(x) are in W0, and their
Ip-translations form an orthonormal basis for W0.
It follows that p−j/2ψ(ν)(pjx − a), j ∈ Z, a ∈ Ip, ν = 1, . . . , p − 1,
is an orthonormal basis for L2(Qp).
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How to construct another MRA?

Let ϕ be a scaling function for a MRA. It follows from axiom (a)
that V0 ⊂ V1. In the real setting the relation V0 ⊂ V1 holds if
and only if ϕ is refinable, i.e. ϕ satisfies a refinement equations:
ϕ(x) =

∑
n∈Z hnϕ(2x − n).

What happens in p-adics?
ϕ(x) =

∑
a∈Ip

βaϕ(p−1x − a), – p-adic refinement equation.

If ϕ ∈ L2(Qp) is a scaling function and suppϕ ⊂ BN(0), N ≥ 0,
then ϕ is refinable and its refinement equation is

ϕ(x) =

pN+1−1∑
k=0

hkϕ
(x

p
− k

pN+1

)
.
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Let ϕ be refinable (we consider only scaling functions ϕ ∈ D ).
Can we hope that ϕ generates a MRA?

For axiom (a), every ϕ(x − b), b ∈ Ip, should be decomposed with
respect to the system {p1/2ϕ(p−1x − a), a ∈ Ip}.

Generally speaking, we cannot state that axiom (a) of the
definition of MRA is fulfilled because Ip is not a group.
For example, a = 3

4 ∈ I2, b = 1
2 ∈ I2, a + b 6∈ I2
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If supp ϕ̂ ⊂ B0(0) ⇐⇒ ϕ(x + 1) = ϕ(x) ∀x ∈ Qp, then
axiom (a) of the definition of MRA is fulfilled because for all
a, b ∈ Ip there exists c ∈ Ip such that a + b ≡ c (mod 1).

Theorem

Let m0(ξ) = 1
p

∑pN+1−1
k=0 βkχp(kξ), m0(0) = 1,

ϕ̂(ξ) =
∏∞

j=1 m0

(
ξ

pN−j

)
. If m0

(
k

pN+1

)
= 0 for all

k = 1, . . . , pN+1 − 1 not divisible by p, then supp ϕ̂ ⊂ B0(0). If,
furthermore,

∣∣m0

(
k

pN+1

)∣∣ = 1 for all k = 1, . . . , pN+1 − 1 divisible

by p, then {ϕ(x − a) : a ∈ Ip} is an orthonormal system, i.e. ϕ is
an orthogonal scaling function generating a MRA.

A.Yu. Khrennikov, V.M. Shelkovich and M. S., p-Adic refinable functions and

MRA-based wavelets, J. Approx. Theory, 161 (2009) 226-238
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Thus there exists a wide class of refinable functions ϕ with
supp ϕ̂ ⊂ B0(0) generating a MRA.

However, in contrast to the real setting,

Theorem

There exists a unique MRA generated by an orthogonal scaling
function ϕ ∈ D, supp ϕ̂ ⊂ B0(0). It is Haar MRA.
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Is it possible a function ϕ with supp ϕ̂ 6⊂ B0(0) to be an
orthogonal scaling function?

Theorem

There exist MRAs with scaling functions ϕ such that
supp ϕ̂ 6⊂ B0(0).

Theorem

Let ϕ ∈ D be an orthogonal scaling function and ϕ̂(0) 6= 0. Then
supp ϕ̂ ⊂ B0(0).

Corollary

There exists a unique MRA generated by an orthogonal scaling
function. It is Haar MRA.

S. Albeverio, S. Evdokimov and M. S. p-Adic multiresolution analysis and wavelet

frames J. Fourier Anal. Appl., 16 (2010), No. 5, 693-714

M. Skopina p-Adic wavelets



Wavelets in different structures
p-adic wavelets

Orthogonal p-adic wavelet bases
Non-orthogonal wavelet bases

p-adic analisis
p-Adic Haar basis
Refinement equation
Refinable functions generating MRA

Is it possible a function ϕ with supp ϕ̂ 6⊂ B0(0) to be an
orthogonal scaling function?

Theorem

There exist MRAs with scaling functions ϕ such that
supp ϕ̂ 6⊂ B0(0).

Theorem

Let ϕ ∈ D be an orthogonal scaling function and ϕ̂(0) 6= 0. Then
supp ϕ̂ ⊂ B0(0).

Corollary

There exists a unique MRA generated by an orthogonal scaling
function. It is Haar MRA.

S. Albeverio, S. Evdokimov and M. S. p-Adic multiresolution analysis and wavelet

frames J. Fourier Anal. Appl., 16 (2010), No. 5, 693-714

M. Skopina p-Adic wavelets



Wavelets in different structures
p-adic wavelets

Orthogonal p-adic wavelet bases
Non-orthogonal wavelet bases

p-adic analisis
p-Adic Haar basis
Refinement equation
Refinable functions generating MRA

Is it possible a function ϕ with supp ϕ̂ 6⊂ B0(0) to be an
orthogonal scaling function?

Theorem

There exist MRAs with scaling functions ϕ such that
supp ϕ̂ 6⊂ B0(0).

Theorem

Let ϕ ∈ D be an orthogonal scaling function and ϕ̂(0) 6= 0. Then
supp ϕ̂ ⊂ B0(0).

Corollary

There exists a unique MRA generated by an orthogonal scaling
function. It is Haar MRA.

S. Albeverio, S. Evdokimov and M. S. p-Adic multiresolution analysis and wavelet

frames J. Fourier Anal. Appl., 16 (2010), No. 5, 693-714

M. Skopina p-Adic wavelets



Wavelets in different structures
p-adic wavelets

Orthogonal p-adic wavelet bases
Non-orthogonal wavelet bases

p-adic analisis
p-Adic Haar basis
Refinement equation
Refinable functions generating MRA

So, it is not possible to construct orthogonal wavelets based
on a MRA generated by a scaling function ϕ ∈ D with
supp ϕ̂ 6⊂ B0(0).
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Are there non-Haar p-adic orthogonal wavelet bases?

S. Evdokimov and M. S. Description of p-adic orthogonal wavelet bases generated by

periodic functions. (prepared for publication)

What means ”A wavelet basis is generated by the Haar MRA”?

Haar MRA {Vj}j∈Z, Wj := Vj+1 	 Vj , L2(Qp) =
⊕
j∈Z

Wj

A collection of functions ψ(ν) ∈ W0, ν = 1, . . . , p − 1, such that
{ψ(ν)(x − a), a ∈ Ip, ν = 1, . . . , p − 1} is an orthonormal basis for
W0 is called a standard set of Haar wavelet functions.

The corresponding wavelet system

{pj/2ψ(ν)(p−jx − a), a ∈ Ip, j ∈ Z, ν = 1, . . . , p − 1}

is an orthonormal basis for L2(Qp). Such bases are called standard
Haar bases.
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p = 2, ψ(x) = χ2(νx/2)1B0(0)(x), ψja(x) := 2j/2ψ(2−jx − a)

{ψ} is a standard set of Haar wavelet functions.

{ψja, a ∈ Ip, j ∈ Z} is a standard Haar basis

ψ(1)(x) =
√

2ψ(x/2), ψ(2)(x) =
√

2ψ((x − 1)/2).

{ψ(ν)
ja , a ∈ Ip, j ∈ Z, ν = 1, 2} = {ψja, a ∈ Ip, j ∈ Z}

{ψ(1), ψ(2)} is not a standard set of Haar wavelet functions.

{ψ(1)
ja , ψ

(2)
ja , a ∈ Ip, j ∈ Z} is a standard Haar basis

ψ(2,1)(x) =
√

2ψ(2)(x/2), ψ(2,2)(x) =
√

2ψ(2)((x − 1)/2),

{ψ(1)
ja , ψ

(2,1)
ja , ψ

(2,2)
ja , a ∈ Ip, j ∈ Z} is a standard Haar basis.
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ψ̃1 =
1√
2
(ψ(1) + ψ(2,1)), ψ̃2 =

1√
2
(ψ(1) − ψ(2,1)), ψ̃3 = ψ(2,2).

{ψ̃1
ja, ψ̃

1
ja, ψ̃

1
ja, a ∈ Ip, j ∈ Z} is not a standard Haar basis.

The vector-function Ψ̃ = (ψ̃1, ψ̃2, ψ̃3)T is unitary equivalent to a
vector-function generating a standard Haar basis.

ψ̃(1,1)(x) =
√

2ψ̃(1)(x/2), ψ̃(1,2)(x) =
√

2ψ̃(1)((x − 1)/2).

The vector-function Ψ̃′ = (ψ̃(1,1), ψ̃(1,2), ψ̃(2), ψ̃(3))T does not
generate a standard Haar basis, and Ψ̃′ is not unitary equivalent to
a vector-function generating a standard Haar basis.

Let us say that a basis obtained in this way is a ”damaged ” Haar
basis.
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All non-standard orthogonal p-adic wavelet bases we saw in the
literature are ”damaged ” Haar bases.

J.J. Benedetto, and R.L. Benedetto, A wavelet theory for local fields and related

groups, The Journal of Geometric Analysis 3 (2004) 423–456

Khrennikov, A. Yu. and Shelkovich, V. M. Non-Haar p-adic wavelets and

pseudodifferential operators, (Russian) Dokl. Akad. Nauk 418 (2008), no. 2, 167–170

M. Skopina p-Adic wavelets



Wavelets in different structures
p-adic wavelets

Orthogonal p-adic wavelet bases
Non-orthogonal wavelet bases

Definition

Two vector-functions Ψ, Ψ′ generating orthonormal wavelet bases
is said to be wavelet equivalent if there exist vector-functions
Ψ(0), . . . ,Ψ(N) such that Ψ(0) = Ψ, Ψ(N) = Ψ′, and for every j > 0
either Ψ(j) is unitary equivalent to Ψ(j−1) or Ψ(j) and Ψ(j−1)

generate the same orthonormal wavelet bases.
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Theorem

Any periodic vector-function generating orthonormal wavelet bases
is wavelet equivalent to a standard set of Haar wavelet functions.

Theorem

There exists a vector-function generating orthonormal wavelet
bases which is not a ”damaged ” Haar bases.

Theorem

If periodic functions ψ(1), . . . , ψ(r) generate orthonormal wavelet
bases, then r is divisible by p − 1, in particular, r ≥ p − 1.
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Theorem

If a wavelet system generated by pm-periodic functions
ψ(1), . . . , ψ(r), m ∈ Z+, is orthonormal, then r ≤ (p − 1)pm−1. In
particular, if a function ψ is 1-periodic, then the wavelet system
generated by ψ cannot be orthogonal.

Theorem

If functions ψ(1), . . . , ψ(r) ∈ Wm, m ∈ Z+, generate orthonormal
wavelet bases, then r = (p − 1)pm.

Theorem

If functions ψ(1), . . . , ψ(r) generate orthonormal wavelet bases,

ψ(ν) ∈ Wjν , then
r∑

ν=1
pm−jν = (p − 1)pm.
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Biorthogonal wavelets on R
To construct biorthogonal wavelets on R one starts with two dual
MRAs {Vj}j∈Z, {Ṽj}j∈Z generated by scaling functions ϕ, ϕ̃ whose
integer translations ϕ(· − n), ϕ̃(· − n) are biorthogonal and form
Riesz bases for V0, Ṽ0 respectively (instead of the requirement:
{ϕ(· − n)}n∈Z forms an orthonormal basis for V0.)

This leads to the construction of biorthogonal wavelets
{2j/2ψ(2jx − n), j , n ∈ Z}, {2j/2ψ̃(2jx − n), j , n ∈ Z}
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Theorem

A function ϕ ∈ D, suppϕ ⊂ BN(0), supp ϕ̂ ⊂ BM(0), N,M ≥ 0,
ϕ̂(0) 6= 0, generates a MRA if and only if
(1) ϕ is refinable;
(2) there exist at least pM+N − pN integers n such that

0 ≤ n < pM+N and ϕ̂
(

n
pM

)
= 0.

S. Albeverio, S. Evdokimov and M. S. p-Adic multiresolution analysis and wavelet

frames, J. Fourier Anal. Appl., 16 (2010), No. 5, 693-714
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Is it possible to construct non-Haar MRA-based
biorthogonal wavelets?

E. King and M. S. On p-adic biorthogonal wavelet bases. (in preparation)

There exist dual pairs of non-Haar MRAs {Vj}j∈Z, {Ṽj}j∈Z
generated respectively by scaling functions ϕ, ϕ̃ whose
Ip-translations ϕ(· − a), ϕ̃(· − a) are biorthogonal.

Theorem

If biorthogonal p-adic wavelet systems
{pj/2ψ(ν)(p−jx − a), a ∈ Ip, j ∈ Z, ν = 1, . . . , p − 1},
{pj/2ψ̃(ν)(p−jx − a), a ∈ Ip, j ∈ Z, ν = 1, . . . , p − 1} are generated

by dual MRAs {Vj}j∈Z, {Ṽj}j∈Z , then each of MRAs is the Haar
MRA.
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Is it possible to construct MRA-based
non-orthogonal wavelets generated by a scaling
function ϕ with supp ϕ̂ 6⊂ B0(0)?

An infinite family of functions ϕM,N ∈ D with
supp ϕ̂M,N ⊂ BM(0), supp ϕ̂M,N 6⊂ B0(0) and the corresponding

wavelet functions ψ
(ν)
M,N , ν = 1, . . . , p − 1, was constructed

explicitly.

Theorem

For integers M,N ≥ 0, the function ϕM,N generates an MRA if

and only if M ≤ pN−1
p−1 − N, Moreover, in this case, the functions

p−j/2ψ
(ν)
M,N(pjx − a), j ∈ Z, a ∈ Ip, ν = 1, . . . , p − 1, form a Riesz

basis for L2(Qp) if and only if M = pN−1
p−1 − N.

S. Albeverio, S. Evdokimov, and M. Skopina, p-Adic Nonorthogonal Wavelet

Bases,Proceedings of the Steklov Institute of Mathematics, 265 (2009), 1-12.M. Skopina p-Adic wavelets
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Thank you for your attention!
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