p-Adic wavelets

M. Skopina

Saint Petersburg State University

< □→ <

э

Real wavelets Haar bases H-p partitions

Wavelets on ${\mathbb R}$

Wavelet basis on \mathbb{R} :

A. Haar, 1910: $\psi(x)$ =

Y. Meyer, S. Mallat, 1988

multiresolution analysis (MRA)

 $\{2^{j/2}\psi(2^jx-n), j,n\in\mathbb{Z}\}\$

Definition

A collection of closed spaces $V_j \subset L_2(\mathbb{R})$, $j \in \mathbb{Z}$, is called a *multiresolution analysis* (*MRA*) in $L_2(\mathbb{R})$, if the following conditions (axioms) hold: **1.** $V_j \subset V_{j+1}$ for all $j \in \mathbb{Z}$; **2.** $\bigcup_{i \in \mathbb{Z}} V_j = L_2(\mathbb{R})$; **3.** $\bigcap_{i \in \mathbb{Z}} V_j = \{$

4. $f \in V_j \iff f(2^{-j} \cdot) \in V_0$ for all $j \in \mathbb{Z}$; **5.** there exists a function $\varphi \in V_0$ such that the sequence of $\varphi \in V_0$ such th

 $\{\varphi(\cdot - n)\}_{n \in \mathbb{Z}}$ forms an orthonormal basis for V_0 .

Each MRA generates an orthonormal wavelet, basis for $L_2(\mathbb{R})$,

Real wavelets Haar bases H-p partitions

Wavelets on ${\mathbb R}$

Wavelet basis on \mathbb{R} :

A. Haar, 1910: $\psi(x) =$

$$\begin{cases} 2^{j/2}\psi(2^{j}x-n), \ j,n\in\mathbb{Z} \\ 1, \ \text{if} \ x\in(0,1/2), \\ -1, \ \text{if} \ x\in(1/2,1), \end{cases}$$

 $\operatorname{\mathsf{supp}}\psi\subset [0,1].$

Y. Meyer, S. Mallat, 1988:

multiresolution analysis (MRA)

Definition

A collection of closed spaces $V_j \subset L_2(\mathbb{R}), j \in \mathbb{Z}$, is called a *multiresolution analysis* (*MRA*) in $L_2(\mathbb{R})$, if the following conditions (axioms) hold: **1.** $V_j \subset V_{j+1}$ for all $j \in \mathbb{Z}$; **2.** $\overline{\bigcup_{j \in \mathbb{Z}} V_j} = L_2(\mathbb{R})$; **3.** $\bigcap_{i \in \mathbb{Z}} V_j = \{0\}$;

4. $f \in V_j \iff f(2^{-j} \cdot) \in V_0$ for all $j \in \mathbb{Z}$; **5.** there exists a function $\varphi \in V_0$ such that the seq

 $\{\varphi(\cdot - n)\}_{n \in \mathbb{Z}}$ forms an orthonormal basis for V_0 .

Each MRA generates an orthonormal wavelet, has is for $l_2(\mathbb{R})$, z

Real wavelets

Wavelet basis on \mathbb{R} : $\{2^{j/2}\psi(2^{j}x-n), j, n \in \mathbb{Z}\}$ A. Haar, 1910: $\psi(x) = \begin{cases} 1, & \text{if } x \in (0, 1/2), \\ -1, & \text{if } x \in (1/2, 1), \end{cases}$

Y. Meyer, S. Mallat, 1988: multiresolution analysis (MRA)

supp $\psi \subset [0, 1]$.

Definition

A collection of closed spaces $V_i \subset L_2(\mathbb{R}), \ i \in \mathbb{Z}$, is called a multiresolution analysis (MRA) in $L_2(\mathbb{R})$, if the following conditions (axioms) hold:

1.
$$V_j \subset V_{j+1}$$
 for all $j \in \mathbb{Z}$; **2.** $\bigcup_{j \in \mathbb{Z}} V_j = L_2(\mathbb{R})$; **3.** $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$;

4.
$$f \in V_j \iff f(2^{-j} \cdot) \in V_0$$
 for all $j \in \mathbb{Z}$;

5. there exists a function $\varphi \in V_0$ such that the sequence $\{\varphi(\cdot - n)\}_{n \in \mathbb{Z}}$ forms an orthonormal basis for V_0 .

Each MRA generates an orthonormal wavelet basis for $L_2(\mathbb{R})$.

Real wavelets Haar bases H-p partitions

Haar wavelet function ψ is generated by $\varphi(x) = \mathbb{1}_{[0,1]}(x)$.

Meyer wavelets: $\hat{\psi}$ is compactly supported, in particular, Kotelnikov-Shannon wavelets which are generated by $\varphi(x) = \frac{\sin \pi x}{\pi x}$ (Haar's untipode).

Daubechies wavelets (which provided JPEG-2000): ψ is compactly supported, $\psi \in C^{r}(\mathbb{R})$.

The exist orthogonal wavelet bases which are not generated by an MRA.

Example:

$$\widehat{\psi} = \mathbb{1}_{[-4/7, -2/7]} + \mathbb{1}_{[2/7, 3/7]} + \mathbb{1}_{[12/7, 16/7]}$$

Real wavelets Haar bases H-p partitions

Haar wavelet function ψ is generated by $\varphi(x) = \mathbb{1}_{[0,1]}(x)$.

Meyer wavelets: $\hat{\psi}$ is compactly supported, in particular, Kotelnikov-Shannon wavelets which are generated by $\varphi(x) = \frac{\sin \pi x}{\pi x}$ (Haar's untipode).

Daubechies wavelets (which provided JPEG-2000): ψ is compactly supported, $\psi \in C^{r}(\mathbb{R})$.

The exist orthogonal wavelet bases which are not generated by an MRA.

Example:

$$\widehat{\psi} = \mathbb{1}_{[-4/7, -2/7]} + \mathbb{1}_{[2/7, 3/7]} + \mathbb{1}_{[12/7, 16/7]}$$

Real wavelets Haar bases H-p partitions

Haar bases in different structures

- W.C. Lang, 1996: Cantor group;
- Yu.A. Farkov, 2008: Vilenkin group;
- S.Kozyrev, 2002: group of p-adic numbers;
- S.F.Lukomskii, 2009-2012: zero-dimension groups;
- H.Aimar, A.Bernardis, B.Iaffei, 2007: a class of metric spaces;
- S.Evdokimov, 2012: ring of adeles

Real wavelets Haar bases H-p partitions

Cantor group

An abelian locally compact group.

Elements are $x = \{x_k\}_{k=-\infty}^{\infty}$, where $x_k \in \{0, 1\}$, and $x_k \neq 0$ for only a finite number of negative k (interpreted as positive numbers: $x = x_{-N-1}2^N + \cdots + x_{-1}2^0 + x_02^{-1} + x_12^{-2} + \ldots$); coordinate-wise mod 2 addition x + y; dilation operator D takes $x = \{x_k\}_{k=-\infty}^{\infty}$ to $Dx = \{x_{k+1}\}_{k=-\infty}^{\infty}$ (interpreted as multiplication by 2).

The group of p-adic numbers with p = 2

An abelian locally compact group. Elements are $x = \{x_k\}_{k=-\infty}^{\infty}$, where $x_k \in \{0,1\}$, and $x_k \neq 0$ for only a finite number of negative k; p-adic addition x + y; dilation operator D takes $x = \{x_k\}_{k=-\infty}^{\infty}$ to $Dx = \{x_{k+1}\}_{k=-\infty}^{\infty}$.

Real wavelets Haar bases H-p partitions

Cantor group

An abelian locally compact group.

Elements are $x = \{x_k\}_{k=-\infty}^{\infty}$, where $x_k \in \{0, 1\}$, and $x_k \neq 0$ for only a finite number of negative k (interpreted as positive numbers: $x = x_{-N-1}2^N + \cdots + x_{-1}2^0 + x_02^{-1} + x_12^{-2} + \ldots$); coordinate-wise mod 2 addition x + y; dilation operator D takes $x = \{x_k\}_{k=-\infty}^{\infty}$ to $Dx = \{x_{k+1}\}_{k=-\infty}^{\infty}$ (interpreted as multiplication by 2).

The group of p-adic numbers with p = 2

An abelian locally compact group. Elements are $x = \{x_k\}_{k=-\infty}^{\infty}$, where $x_k \in \{0, 1\}$, and $x_k \neq 0$ for only a finite number of negative k; p-adic addition x + y; dilation operator D takes $x = \{x_k\}_{k=-\infty}^{\infty}$ to $Dx = \{x_{k+1}\}_{k=-\infty}^{\infty}$.

Real wavelets Haar bases H-p partitions

Cantor group

Haar basis:
$$\{2^{j/2}\psi(D^{j}x-a), j \in \mathbb{Z}, a \in I\}$$
, where
 $\psi(x) = \begin{cases} 1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 0, \\ -1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 1, \end{cases}$ $I = \{x = \{x_k\}_{k=-\infty}^{-1}\}.$

There exist analogs of Daubechies wavelets W.C. Lang 1996; V. Yu. Protasov and Yu. A. Farkov 2006 The group of p-adic numbers with p = 2

Haar basis: $\{2^{j/2}\psi(D^{j}x-a), j \in \mathbb{Z}, a \in I\}$, where $\psi(x) = \begin{cases} 1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 0, \\ -1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 1, \end{cases}$, $I = \{x = \{x_k\}_{k=-\infty}^{-1}\}$.

Real wavelets Haar bases H-p partitions

Cantor group

Haar basis:
$$\{2^{j/2}\psi(D^{j}x-a), j \in \mathbb{Z}, a \in I\}$$
, where
 $\psi(x) = \begin{cases} 1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 0, \\ -1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 1, \end{cases}$ $I = \{x = \{x_k\}_{k=-\infty}^{-1}\}.$

There exist analogs of Daubechies wavelets W.C. Lang 1996; V. Yu. Protasov and Yu. A. Farkov 2006 The group of p-adic numbers with p = 2

Haar basis: $\{2^{j/2}\psi(D^{j}x-a), j \in \mathbb{Z}, a \in I\}$, where $\psi(x) = \begin{cases} 1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 0, \\ -1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 1, \end{cases}$, $I = \{x = \{x_k\}_{k=-\infty}^{-1}\}$.

Real wavelets Haar bases H-p partitions

Cantor group

Haar basis:
$$\{2^{j/2}\psi(D^{j}x-a), j \in \mathbb{Z}, a \in I\}$$
, where
 $\psi(x) = \begin{cases} 1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 0, \\ -1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 1, \end{cases}$ $I = \{x = \{x_k\}_{k=-\infty}^{-1}\}.$

There exist analogs of Daubechies wavelets W.C. Lang 1996; V. Yu. Protasov and Yu. A. Farkov 2006 The group of p-adic numbers with p = 2

Haar basis:
$$\{2^{j/2}\psi(D^{j}x-a), j \in \mathbb{Z}, a \in I\}$$
, where
 $\psi(x) = \begin{cases} 1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 0, \\ -1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 1, \end{cases}$, $I = \{x = \{x_k\}_{k=-\infty}^{-1}\}$.

Real wavelets Haar bases H-p partitions

Cantor group

Haar basis:
$$\{2^{j/2}\psi(D^{j}x-a), j \in \mathbb{Z}, a \in I\}$$
, where
 $\psi(x) = \begin{cases} 1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 0, \\ -1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 1, \end{cases}$ $I = \{x = \{x_k\}_{k=-\infty}^{-1}\}.$

There exist analogs of Daubechies wavelets W.C. Lang 1996; V. Yu. Protasov and Yu. A. Farkov 2006 The group of p-adic numbers with p = 2

Haar basis:
$$\{2^{j/2}\psi(D^{j}x-a), j \in \mathbb{Z}, a \in I\}$$
, where
 $\psi(x) = \begin{cases} 1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 0, \\ -1, & \text{if } x = \{x_k\}_{k=0}^{\infty}, x_0 = 1, \end{cases}$, $I = \{x = \{x_k\}_{k=-\infty}^{-1}\}$.

Real wavelets Haar bases H-p partitions

Why are Haar bases in various structures the same?

Answer: I. Ya. Novikov and M.S., Mathematical Notes, 91 (2012), no 5-6, 895-898

 (Ω, Σ, μ)

Let $\mathbf{p} = \{p_j\}_{j=-\infty}^{\infty}$ be a sequence of integers, $p_j > 1$. Assume that there exist collections of sets Ω_{jn} , $n \in \mathbb{Z}_+$, which are mutually disjoint for each $j \in \mathbb{Z}$, and such that $\mu\Omega_{0n} = 1$ for every $n \in \mathbb{Z}_+$, $\Omega = \bigcup_n \Omega_{jn}$ for every $j \in \mathbb{Z}$, and each $\Omega_{j-1,n}$ is divided into p_j equimeasured subsets Ω_{j,n_k} , $n_k = n_k(n,j) \in \mathbb{Z}$.

Collection of such $\{\Omega_{jn}\}_{(j,n)}$ is called (H, \mathbf{p}) -partition.

Real wavelets Haar bases H-p partitions

Haar bases generated by (H, \mathbf{p}) -partition

Let (Ω, Σ, μ) be equipped with a topology τ such that Σ contains all open sets, the measure μ be regular, and $\Omega = {\{\Omega_{jn}\}_{(j,n)}}$ be (H, \mathbf{p}) -partition.

Assume that for every $x \in \Omega$ and for every element U of the base of neighborhoods of a point x there exists Ω_{jn} containing x and contained in U.

Given pair
$$(j, n)$$
, let $\Omega_{j,n} = \bigcup_{k=0}^{p_{j+1}-1} \Omega_{j+1,n_k}$,
 $\psi_{jn}^{\nu} = C_{j+1} \sum_{k=0}^{p_{j+1}-1} h_{\nu k} \mathbb{1}_{\Omega_{j+1,n_k}}, \quad \nu = 1, \dots, p_{j+1}-1,$

where $h_{\nu k}$, $\nu, k = 0, ..., p_{j+1} - 1$, are entries of a unitary matrix whose first row consists of elements equal to each other. The system $\Psi_{j,n} := \bigcup_{(j,n)} \{ \psi_{jn}^{\nu}, \nu = 1, ..., p_{j+1} - 1 \}$ is a Haar basis for $L_2(\Omega)$

Real wavelets Haar bases H-p partitions

If τ is defined by a metric, then μ is regular. In this case the assumption of the theorem is satisfied whenever diameters of included sets Ω_{jn} containing x tend to zero as $j \to +\infty$. If there exists a dilation operator $D: \Omega \to \Omega$ such that $D^{-1}\Omega_{jn} = \Omega_{j+1,n}$ for all $n \in \mathbb{Z}_+$, then we obtain Haar basis in traditional form

$$\psi_{jk}^
u(x)=\mathcal{C}_j\psi_{0k}^
u(\mathcal{D}^jx)$$
, $k\in\mathbb{Z}_+$, $j\in\mathbb{Z}$, $u=1,\ldots,p_{j+1}-1$.

Similarly, an appropriate sequence of dilation operators $D_j : \Omega \to \Omega$ such that $D_j^{-1}\Omega_{jn} = \Omega_{j+1,n}$ for all $n \in \mathbb{Z}_+$, leads to Haar basis.

Real wavelets Haar bases H-p partitions

If τ is defined by a metric, then μ is regular. In this case the assumption of the theorem is satisfied whenever diameters of included sets Ω_{jn} containing x tend to zero as $j \to +\infty$. If there exists a dilation operator $D : \Omega \to \Omega$ such that $D^{-1}\Omega_{jn} = \Omega_{j+1,n}$ for all $n \in \mathbb{Z}_+$, then we obtain Haar basis in traditional form

$$\psi_{jk}^{\nu}(x) = C_{j}\psi_{0k}^{\nu}(D^{j}x), \ k \in \mathbb{Z}_{+}, \ j \in \mathbb{Z}, \ \nu = 1, \dots, p_{j+1} - 1.$$

Similarly, an appropriate sequence of dilation operators $D_j : \Omega \to \Omega$ such that $D_j^{-1}\Omega_{jn} = \Omega_{j+1,n}$ for all $n \in \mathbb{Z}_+$, leads to Haar basis.

Real wavelets Haar bases H-p partitions

For most Haar bases, it is easy to see that a natural dilation operator D (or a sequence of dilation operators D_j) provides an (H, \mathbf{p}) -partition.

W.C. Lang, 1996: Cantor group, $D: x \rightarrow 2x$ Yu.A. Farkov, 2008: Vilenkin group, $D: x \rightarrow px$ S.Kozyrev, 2002: group of p-adic numbers, $D: x \rightarrow x/p$ S.F.Lukomskii, 2009-2012: zero-dimension groups, a natural sequence of D_j

S.Albeverio and S.Kozyrev, 2009: \mathbb{Q}^d_p , D: x o Ax, where

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & p \\ 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

 Wavelets in different structures
 R

 p-adic wavelets
 H

 Orthogonal p-adic wavelet bases
 H

 Non-orthogonal wavelet bases
 H

Real wavelets Haar bases H-p partitions

For most Haar bases, it is easy to see that a natural dilation operator D (or a sequence of dilation operators D_j) provides an (H, \mathbf{p}) -partition.

W.C. Lang, 1996: Cantor group, $D: x \rightarrow 2x$ Yu.A. Farkov, 2008: Vilenkin group, $D: x \rightarrow px$ S.Kozyrev, 2002: group of p-adic numbers, $D: x \rightarrow x/p$ S.F.Lukomskii, 2009-2012: zero-dimension groups, a natural sequence of D_j

S.Albeverio and S.Kozyrev, 2009: \mathbb{Q}_p^d , $D : x \to Ax$, where

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & p \\ 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

 Wavelets in different structures p-adic wavelets
 Real Haat

 Orthogonal p-adic wavelet bases
 H-p

Real wavelets Haar bases H-p partitions

Slightly less trivial to see that the operator $D: x \to Ax$, where $D = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, provides an (H, \mathbf{p}) -partition for \mathbb{Q}_p^2 . E.King and M.Skopina, 2010

It was quite complicated to find dilation operators D_j providing an (H, \mathbf{p}) -partition for the ring of adels S.Evdokimov, 2012

Slightly less trivial to see that the operator $D: x \to Ax$, where $D = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, provides an (H, \mathbf{p}) -partition for \mathbb{Q}_p^2 . E.King and M.Skopina, 2010

It was quite complicated to find dilation operators D_j providing an (H, \mathbf{p}) -partition for the ring of adels

S.Evdokimov, 2012

p-adic analisis p-Adic Haar basis Refinement equation Refinable functions generating MRA

- 4 同 2 4 日 2 4 日 2

\mathbb{Q}_p is the field of *p*-adic numbers

 $B_{\gamma}(a) := \{x \in \mathbb{Q}_p : |x - a|_p \le p^{\gamma}\}, a \in \mathbb{Q}_p, \gamma \in \mathbb{Z}.$

 $\mathbb{Z}_p := B_0(0) \text{ is the ring of } p\text{-adic integers;} \\ \mathbb{Z}_p := \left\{ x \in \mathbb{Q}_p : x = [x] := x - \{x\} \right\}$

$$I_{p} := \left\{ x \in \mathbb{Q}_{p} : x = \{x\} \right\} \quad \left(I_{2} = \{0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \ldots\} \right)$$

 I_p is a natural set of translations because

$$\mathbb{Q}_{p} = igcup_{a \in I_{p}} B_{0}(a) = igcup_{a \in I_{p}} (\mathbb{Z}_{p} + a)$$

\mathbb{Q}_p is the field of *p*-adic numbers

$$\mathcal{B}_{\gamma}(a):=\{x\in \mathbb{Q}_{p}:|x-a|_{p}\leq p^{\gamma}\}$$
, $a\in \mathbb{Q}_{p},\,\gamma\in\mathbb{Z}.$

$$\mathbb{Z}_p := B_0(0) \text{ is the ring of } p\text{-adic integers;} \\ \mathbb{Z}_p := \left\{ x \in \mathbb{Q}_p : x = [x] := x - \{x\} \right\}$$

$$I_{p} := \left\{ x \in \mathbb{Q}_{p} : x = \{x\} \right\} \quad \left(I_{2} = \{0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \dots\} \right)$$

 I_p is a natural set of translations because

$$\mathbb{Q}_p = igcup_{a \in I_p} B_0(a) = igcup_{a \in I_p} (\mathbb{Z}_p + a)$$

<ロト <部ト < 注ト < 注ト

э

\mathbb{Q}_p is the field of *p*-adic numbers

$$B_\gamma(a):=\{x\in \mathbb{Q}_p: |x-a|_p\leq p^\gamma\}, \ a\in \mathbb{Q}_p, \ \gamma\in \mathbb{Z}.$$

$$\mathbb{Z}_p := B_0(0) \text{ is the ring of } p\text{-adic integers;} \\ \mathbb{Z}_p := \left\{ x \in \mathbb{Q}_p : x = [x] := x - \{x\} \right\}$$

$$I_p := \left\{ x \in \mathbb{Q}_p : x = \{x\} \right\} \quad (I_2 = \{0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \dots\})$$

 I_p is a natural set of translations because

$$\mathbb{Q}_p = igcup_{a \in I_p} B_0(a) = igcup_{a \in I_p} (\mathbb{Z}_p + a)$$

<ロト <部ト < 注ト < 注ト

э

p-adic analisis p-Adic Haar basis Refinement equation Refinable functions generating MRA

• We consider complex-valued function f defined on \mathbb{Q}_p .

- A function f defined on Q_p is called periodic if there exists m ∈ Z such that f(x + p^m) = f(x) for every x ∈ Q_p.
- \mathcal{D} denotes the set of compactly supported periodic functions (so-called test functions). The space \mathcal{D} is an analog of the Schwartz space in the real analysis.
- Since Q_p is a locally compact abelian group with a compact open subgroup, there exists a Haar measure dx on Q_p, and the corresponding space L₂(Q_p).

 Wavelets in different structures
 p-adic

 p-adic wavelets
 p-Adic

 Orthogonal p-adic wavelet bases
 Refin

 Non-orthogonal wavelet bases
 Refin

p-adic analisis p-Adic Haar basis Refinement equation Refinable functions generating MRA

- We consider complex-valued function f defined on \mathbb{Q}_p .
- A function f defined on Q_p is called periodic if there exists m ∈ Z such that f(x + p^m) = f(x) for every x ∈ Q_p.
- \mathcal{D} denotes the set of compactly supported periodic functions (so-called test functions). The space \mathcal{D} is an analog of the Schwartz space in the real analysis.
- Since Q_p is a locally compact abelian group with a compact open subgroup, there exists a Haar measure dx on Q_p, and the corresponding space L₂(Q_p).

 Wavelets in different structures p-adic wavelets
 p-adic ana p-Adic tage

 Orthogonal p-adic wavelet bases
 Refinemen Refinable

p-adic analisis p-Adic Haar basis Refinement equation Refinable functions generating MRA

- We consider complex-valued function f defined on \mathbb{Q}_p .
- A function f defined on \mathbb{Q}_p is called periodic if there exists $m \in \mathbb{Z}$ such that $f(x + p^m) = f(x)$ for every $x \in \mathbb{Q}_p$.
- \mathcal{D} denotes the set of compactly supported periodic functions (so-called test functions). The space \mathcal{D} is an analog of the Schwartz space in the real analysis.
- Since Q_p is a locally compact abelian group with a compact open subgroup, there exists a Haar measure dx on Q_p, and the corresponding space L₂(Q_p).

 Wavelets in different structures p-adic wavelets
 p-adic an p-Adic H

 Orthogonal p-adic wavelet bases
 Refineme Refinable

p-adic analisis p-Adic Haar basis Refinement equation Refinable functions generating MRA

- We consider complex-valued function f defined on \mathbb{Q}_p .
- A function f defined on \mathbb{Q}_p is called periodic if there exists $m \in \mathbb{Z}$ such that $f(x + p^m) = f(x)$ for every $x \in \mathbb{Q}_p$.
- \mathcal{D} denotes the set of compactly supported periodic functions (so-called test functions). The space \mathcal{D} is an analog of the Schwartz space in the real analysis.
- Since Q_p is a locally compact abelian group with a compact open subgroup, there exists a Haar measure dx on Q_p, and the corresponding space L₂(Q_p).

 Wavelets in different structures
 p-adic

 p-adic wavelets
 p-Adic

 Orthogonal p-adic wavelet bases
 Refine

 Non-orthogonal wavelet bases
 Refine

p-adic analisis *p*-Adic Haar basis Refinement equation Refinable functions generating MRA

• $\chi_p(t) = e^{2\pi i t} := e^{2\pi i \{t\}_p}$ are the additive characters of \mathbb{Q}_p ,

 \bullet The Fourier transform of $\varphi \in \mathcal{D}$ is defined by the formula

$$\widehat{\varphi}(\xi) := \int\limits_{\mathbb{Q}_p} \chi_p(\xi \cdot x) \varphi(x) \, dx.$$

- One extends the Fourier transform onto L₂(Q_p) in the standard way.
- Interesting fact: $\varphi = \mathbb{1}_{B_0(0)} = \widehat{\varphi}$
- $\varphi \in \mathcal{D}$ if and only if both the functions $\varphi, \hat{\varphi}$ are compactly supported.
- φ is p^m -periodic if and only if supp $\widehat{\varphi} \subset B_m(0)$.

- $\chi_{
 ho}(t) = e^{2\pi i t} := e^{2\pi i \{t\}_{
 ho}}$ are the additive characters of $\mathbb{Q}_{
 ho}$,
- The Fourier transform of $\varphi \in \mathcal{D}$ is defined by the formula

$$\widehat{\varphi}(\xi) := \int\limits_{\mathbb{Q}_p} \chi_p(\xi \cdot x) \varphi(x) \, dx.$$

- One extends the Fourier transform onto L₂(Q_p) in the standard way.
- Interesting fact: $\varphi = \mathbb{1}_{B_0(0)} = \widehat{\varphi}$
- $\varphi \in \mathcal{D}$ if and only if both the functions $\varphi, \hat{\varphi}$ are compactly supported.
- φ is p^m -periodic if and only if supp $\widehat{\varphi} \subset B_m(0)$.

▲ 同 ▶ → 三 ▶

- $\chi_{
 ho}(t) = e^{2\pi i t} := e^{2\pi i \{t\}_{
 ho}}$ are the additive characters of $\mathbb{Q}_{
 ho}$,
- The Fourier transform of $\varphi \in \mathcal{D}$ is defined by the formula

$$\widehat{\varphi}(\xi) := \int\limits_{\mathbb{Q}_p} \chi_p(\xi \cdot x) \varphi(x) \, dx.$$

- One extends the Fourier transform onto L₂(Q_p) in the standard way.
- Interesting fact: $\varphi = \mathbb{1}_{B_0(0)} = \widehat{\varphi}$
- $\varphi \in \mathcal{D}$ if and only if both the functions $\varphi, \hat{\varphi}$ are compactly supported.
- φ is p^m -periodic if and only if supp $\widehat{\varphi} \subset B_m(0)$.

▲□ ► < □ ► </p>

- $\chi_{
 ho}(t) = e^{2\pi i t} := e^{2\pi i \{t\}_{
 ho}}$ are the additive characters of $\mathbb{Q}_{
 ho}$,
- The Fourier transform of $\varphi \in \mathcal{D}$ is defined by the formula

$$\widehat{\varphi}(\xi) := \int\limits_{\mathbb{Q}_p} \chi_p(\xi \cdot x) \varphi(x) \, dx.$$

- One extends the Fourier transform onto L₂(Q_p) in the standard way.
- Interesting fact: $\varphi = \mathbb{1}_{B_0(0)} = \widehat{\varphi}$
- $\varphi \in \mathcal{D}$ if and only if both the functions $\varphi, \hat{\varphi}$ are compactly supported.
- φ is p^m -periodic if and only if supp $\widehat{\varphi} \subset B_m(0)$.

- $\chi_{
 ho}(t) = e^{2\pi i t} := e^{2\pi i \{t\}_{
 ho}}$ are the additive characters of $\mathbb{Q}_{
 ho}$,
- The Fourier transform of $\varphi \in \mathcal{D}$ is defined by the formula

$$\widehat{\varphi}(\xi) := \int\limits_{\mathbb{Q}_p} \chi_p(\xi \cdot x) \varphi(x) \, dx.$$

- One extends the Fourier transform onto L₂(Q_p) in the standard way.
- Interesting fact: $\varphi = \mathbb{1}_{B_0(0)} = \widehat{\varphi}$
- $\varphi \in \mathcal{D}$ if and only if both the functions $\varphi, \hat{\varphi}$ are compactly supported.
- φ is p^m -periodic if and only if supp $\widehat{\varphi} \subset B_m(0)$.

- $\chi_{
 ho}(t) = e^{2\pi i t} := e^{2\pi i \{t\}_{
 ho}}$ are the additive characters of $\mathbb{Q}_{
 ho}$,
- The Fourier transform of $\varphi \in \mathcal{D}$ is defined by the formula

$$\widehat{\varphi}(\xi) := \int\limits_{\mathbb{Q}_p} \chi_p(\xi \cdot x) \varphi(x) \, dx.$$

- One extends the Fourier transform onto L₂(Q_p) in the standard way.
- Interesting fact: $\varphi = \mathbb{1}_{B_0(0)} = \widehat{\varphi}$
- $\varphi \in \mathcal{D}$ if and only if both the functions $\varphi, \widehat{\varphi}$ are compactly supported.
- φ is p^m -periodic if and only if supp $\widehat{\varphi} \subset B_m(0)$.

▲□ ► < □ ► </p>

p-Adic Haar basis

$$p^{-j/2}\psi^{(
u)}(p^jx-a), j \in \mathbb{Z}, a \in I_p, \nu = 1, \dots, p-1,$$

where $\psi^{(
u)}(x) = \chi_p(
ux/p)\mathbb{1}_{B_0(0)}(x).$

Kozyrev, S.V. *Wavelet analysis as a p-adic spectral analysis*, Izvestia Akademii Nauk, Seria Math., **66** (2002), no. 2, 149–158.

(H, \mathbf{p}) -partition

$$\Omega = \mathbb{Q}_p, \ p_j = p;$$

$$\Omega_{0n} = B_0(a_n) = \mathbb{Z}_p + a_n, \text{ where } \{a_n\}_{n=1}^{\infty} = I_p;$$

$$\Omega_{jn} = D^{-1}\Omega_{j-1,n}, \text{ where } D^{-1}: \quad x \longrightarrow px;$$

$$\{h_{\nu k}\}_{\nu,k=0}^{p-1} = \{e^{2\pi i\nu k}\}_{\nu,k=0}^{p-1}.$$

p-Adic Haar basis

$$p^{-j/2}\psi^{(
u)}(p^jx-a), j \in \mathbb{Z}, a \in I_p, \nu = 1, \dots, p-1,$$

where $\psi^{(
u)}(x) = \chi_p(
ux/p)\mathbb{1}_{B_0(0)}(x).$

Kozyrev, S.V. *Wavelet analysis as a p-adic spectral analysis*, Izvestia Akademii Nauk, Seria Math., **66** (2002), no. 2, 149–158.

(H, \mathbf{p}) -partition

$$\Omega = \mathbb{Q}_p, \ p_j = p;$$

$$\Omega_{0n} = B_0(a_n) = \mathbb{Z}_p + a_n, \text{ where } \{a_n\}_{n=1}^{\infty} = I_p;$$

$$\Omega_{jn} = D^{-1}\Omega_{j-1,n}, \text{ where } D^{-1}: \quad x \longrightarrow px;$$

$$\{h_{\nu k}\}_{\nu,k=0}^{p-1} = \{e^{2\pi i\nu k}\}_{\nu,k=0}^{p-1}.$$

 Wavelets in different structures
 p

 p-adic wavelets
 p

 Orthogonal p-adic wavelet bases
 R

 Non-orthogonal wavelet bases
 F

p-adic analisis **p-Adic Haar basis** Refinement equation Refinable functions generating MRA

Definition

A collection of closed spaces $V_j \subset L^2(\mathbb{Q}_p)$, $j \in \mathbb{Z}$, is called a multiresolution analysis (MRA) in $L^2(\mathbb{Q}_p)$ if the following axioms hold

(a)
$$V_j \subset V_{j+1}$$
 for all $j \in \mathbb{Z}$;
(b) $\bigcup_{j \in \mathbb{Z}} V_j$ is dense in $L^2(\mathbb{Q}_p)$;
(c) $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$;
(d) $f(\cdot) \in V_j \iff f(p^{-1} \cdot) \in V_{j+1}$ for all $j \in \mathbb{Z}$;
(e) there exists $\varphi \in V_0$ such that $V_0 = \overline{\text{span} \{\varphi(x-a), a \in I_p\}}$.

The function φ from axiom (e) is called scaling. If, moreover, the system $\{\varphi(x - a), a \in I_p\}$ is an orthonormal basis for V_0 , then φ is called orthogonal scaling function.

 Wavelets in different structures
 p

 p-adic wavelets
 p

 Orthogonal p-adic wavelet bases
 R

 Non-orthogonal wavelet bases
 R

p-adic analisis **p-Adic Haar basis** Refinement equation Refinable functions generating MRA

Image: A = A

Definition

A collection of closed spaces $V_j \subset L^2(\mathbb{Q}_p)$, $j \in \mathbb{Z}$, is called a multiresolution analysis (MRA) in $L^2(\mathbb{Q}_p)$ if the following axioms hold

(a)
$$V_j \subset V_{j+1}$$
 for all $j \in \mathbb{Z}$;
(b) $\bigcup_{j \in \mathbb{Z}} V_j$ is dense in $L^2(\mathbb{Q}_p)$;
(c) $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$;
(d) $f(\cdot) \in V_j \iff f(p^{-1} \cdot) \in V_{j+1}$ for all $j \in \mathbb{Z}$;
(e) there exists $\varphi \in V_0$ such that $V_0 = \overline{\text{span} \{\varphi(x-a), a \in I_p\}}$.

The function φ from axiom (e) is called scaling. If, moreover, the system $\{\varphi(x-a), a \in I_p\}$ is an orthonormal basis for V_0 , then φ is called orthogonal scaling function.

p-adic analisis **p-Adic Haar basis** Refinement equation Refinable functions generating MRA

Theorem

There exists an MRA generated by an orthogonal scaling function.

V. M. Shelkovich and M. S., *p-Adic Haar multiresolution analysis and pseudo-differential operators*, J. Fourier Analysis and Appl., 15 (2009), N 3, 366-393

This MRA (Haar MRA) is generated by the scaling function is $\varphi = \mathbb{1}_{B_0(0)}$.

Define the Haar wavelet spaces W_j , $j \in \mathbb{Z}$, by $V_j \oplus W_j = V_{j+1}$. Due to axioms (a), (b), (c), $L^2(\mathbb{Q}_p) = \bigoplus_{j \in \mathbb{Z}} W_j$.

The functions $\psi^{(\nu)}(x) = \chi_p(\nu x/p) \mathbb{1}_{B_0(0)}(x)$ are in W_0 , and their I_p -translations form an orthonormal basis for W_0 . It follows that $p^{-j/2}\psi^{(\nu)}(p^j x - a), j \in \mathbb{Z}, a \in I_p, \nu = 1, \dots, p-1$, is an orthonormal basis for $L^2(\mathbb{Q}_p)$.

p-adic analisis **p-Adic Haar basis** Refinement equation Refinable functions generating MRA

Theorem

There exists an MRA generated by an orthogonal scaling function.

V. M. Shelkovich and M. S., *p-Adic Haar multiresolution analysis and pseudo-differential operators*, J. Fourier Analysis and Appl., 15 (2009), N 3, 366-393

This MRA (Haar MRA) is generated by the scaling function is $\varphi = \mathbb{1}_{B_0(0)}$.

Define the Haar wavelet spaces W_j , $j \in \mathbb{Z}$, by $V_j \oplus W_j = V_{j+1}$. Due to axioms (a), (b), (c), $L^2(\mathbb{Q}_p) = \bigoplus_{j \in \mathbb{Z}} W_j$.

The functions $\psi^{(\nu)}(x) = \chi_p(\nu x/p) \mathbb{1}_{B_0(0)}(x)$ are in W_0 , and their I_p -translations form an orthonormal basis for W_0 . It follows that $p^{-j/2}\psi^{(\nu)}(p^j x - a), j \in \mathbb{Z}, a \in I_p, \nu = 1, \dots, p-1$, is an orthonormal basis for $L^2(\mathbb{Q}_p)$.

p-adic analisis **p-Adic Haar basis** Refinement equation Refinable functions generating MRA

Theorem

There exists an MRA generated by an orthogonal scaling function.

V. M. Shelkovich and M. S., *p-Adic Haar multiresolution analysis and pseudo-differential operators*, J. Fourier Analysis and Appl., 15 (2009), N 3, 366-393

This MRA (Haar MRA) is generated by the scaling function is $\varphi = \mathbb{1}_{B_0(0)}$.

Define the Haar wavelet spaces W_j , $j \in \mathbb{Z}$, by $V_j \oplus W_j = V_{j+1}$. Due to axioms (a), (b), (c), $L^2(\mathbb{Q}_p) = \bigoplus_{j \in \mathbb{Z}} W_j$.

The functions $\psi^{(\nu)}(x) = \chi_p(\nu x/p) \mathbb{1}_{B_0(0)}(x)$ are in W_0 , and their I_p -translations form an orthonormal basis for W_0 . It follows that $p^{-j/2}\psi^{(\nu)}(p^j x - a), j \in \mathbb{Z}, a \in I_p, \nu = 1, \dots, p-1$, is an orthonormal basis for $L^2(\mathbb{Q}_p)$.

How to construct another MRA?

Let φ be a scaling function for a MRA. It follows from axiom (a) that $V_0 \subset V_1$. In the real setting the relation $V_0 \subset V_1$ holds if and only if φ is refinable, i.e. φ satisfies a refinement equations: $\varphi(x) = \sum_{n \in \mathbb{Z}} h_n \varphi(2x - n).$

What happens in *p*-adics? $\varphi(x) = \sum_{a \in I_p} \beta_a \varphi(p^{-1}x - a), \quad -p$ -adic refinement equation.

If $\varphi \in L^2(\mathbb{Q}_p)$ is a scaling function and supp $\varphi \subset B_N(0)$, $N \ge 0$, then φ is refinable and its refinement equation is

$$\varphi(x) = \sum_{k=0}^{p^{N+1}-1} h_k \varphi\left(\frac{x}{p} - \frac{k}{p^{N+1}}\right)$$

Wavelets in different structures *p*-adic vavelets *p*-adic vavelets *p*-Adic Haar basis *p*-Adic Haar basis Refinement equation Refinable functions generating MR.

How to construct another MRA?

Let φ be a scaling function for a MRA. It follows from axiom (a) that $V_0 \subset V_1$. In the real setting the relation $V_0 \subset V_1$ holds if and only if φ is refinable, i.e. φ satisfies a refinement equations: $\varphi(x) = \sum_{n \in \mathbb{Z}} h_n \varphi(2x - n).$

What happens in *p*-adics? $\varphi(x) = \sum_{a \in I_p} \beta_a \varphi(p^{-1}x - a), - p$ -adic refinement equation.

If $\varphi \in L^2(\mathbb{Q}_p)$ is a scaling function and supp $\varphi \subset B_N(0)$, $N \ge 0$, then φ is refinable and its refinement equation is

$$\varphi(x) = \sum_{k=0}^{p^{N+1}-1} h_k \varphi\left(\frac{x}{p} - \frac{k}{p^{N+1}}\right).$$

p-adic analisis p-Adic Haar basis **Refinement equation** Refinable functions generating MRA

Let φ be refinable (we consider only scaling functions $\varphi \in D$). Can we hope that φ generates a MRA?

For axiom (a), every $\varphi(x - b)$, $b \in I_p$, should be decomposed with respect to the system $\{p^{1/2}\varphi(p^{-1}x - a), a \in I_p\}$.

Generally speaking, we cannot state that axiom (a) of the definition of MRA is fulfilled because l_p is not a group. For example, $a = \frac{3}{4} \in l_2$, $b = \frac{1}{2} \in l_2$, $a + b \notin l_2$
 Wavelets in different structures p-adic wavelets
 p-adic p-Adic

 Orthogonal p-adic wavelet bases
 Refiner

 Non-orthogonal wavelet bases
 Refiner

p-adic analisis p-Adic Haar basis **Refinement equation** Refinable functions generating MRA

Let φ be refinable (we consider only scaling functions $\varphi \in D$). Can we hope that φ generates a MRA?

For axiom (a), every $\varphi(x - b)$, $b \in I_p$, should be decomposed with respect to the system $\{p^{1/2}\varphi(p^{-1}x - a), a \in I_p\}$.

Generally speaking, we cannot state that axiom (a) of the definition of MRA is fulfilled because l_p is not a group. For example, $a = \frac{3}{4} \in I_2$, $b = \frac{1}{2} \in I_2$, $a + b \notin I_2$

If $\operatorname{supp} \widehat{\varphi} \subset B_0(0) \iff \varphi(x+1) = \varphi(x) \ \forall x \in \mathbb{Q}_p$, then axiom (a) of the definition of MRA is fulfilled because for all $a, b \in I_p$ there exists $c \in I_p$ such that $a + b \equiv c \pmod{1}$.

Theorem

Let $m_0(\xi) = \frac{1}{p} \sum_{k=0}^{p^{N+1}-1} \beta_k \chi_p(k\xi), m_0(0) = 1,$ $\widehat{\varphi}(\xi) = \prod_{j=1}^{\infty} m_0\left(\frac{\xi}{p^{N-j}}\right).$ If $m_0\left(\frac{k}{p^{N+1}}\right) = 0$ for all $k = 1, \dots, p^{N+1} - 1$ not divisible by p, then $\operatorname{supp} \widehat{\varphi} \subset B_0(0).$ If, furthermore, $\left|m_0\left(\frac{k}{p^{N+1}}\right)\right| = 1$ for all $k = 1, \dots, p^{N+1} - 1$ divisible by p, then $\{\varphi(x - a) : a \in I_p\}$ is an orthonormal system, i.e. φ is an orthogonal scaling function generating a MRA.

A.Yu. Khrennikov, V.M. Shelkovich and M. S., *p-Adic refinable functions and MRA-based wavelets*, J. Approx. Theory, 161 (2009) 226-238

< D > < A > < B > <</p>

If $\operatorname{supp} \widehat{\varphi} \subset B_0(0) \iff \varphi(x+1) = \varphi(x) \ \forall x \in \mathbb{Q}_p$, then axiom (a) of the definition of MRA is fulfilled because for all $a, b \in I_p$ there exists $c \in I_p$ such that $a + b \equiv c \pmod{1}$.

Theorem

Let $m_0(\xi) = \frac{1}{p} \sum_{k=0}^{p^{N+1}-1} \beta_k \chi_p(k\xi), m_0(0) = 1,$ $\widehat{\varphi}(\xi) = \prod_{j=1}^{\infty} m_0\left(\frac{\xi}{p^{N-j}}\right)$. If $m_0\left(\frac{k}{p^{N+1}}\right) = 0$ for all $k = 1, \dots, p^{N+1} - 1$ not divisible by p, then $\operatorname{supp} \widehat{\varphi} \subset B_0(0)$. If, furthermore, $\left|m_0\left(\frac{k}{p^{N+1}}\right)\right| = 1$ for all $k = 1, \dots, p^{N+1} - 1$ divisible by p, then $\{\varphi(x - a) : a \in I_p\}$ is an orthonormal system, i.e. φ is an orthogonal scaling function generating a MRA.

A.Yu. Khrennikov, V.M. Shelkovich and M. S., *p-Adic refinable functions and MRA-based wavelets*, J. Approx. Theory, 161 (2009) 226-238

(日) (同) (三) (三)

 Wavelets in different structures p-adic wavelets
 p-adic analis p-Adic Haaa

 Orthogonal p-adic wavelet bases
 Refinement

 Non-orthogonal wavelet bases
 Refinable fi

p-adic analisis *p*-Adic Haar basis Refinement equation **Refinable functions generating MRA**

Thus there exists a wide class of refinable functions φ with $supp \, \widehat{\varphi} \subset B_0(0)$ generating a MRA.

However, in contrast to the real setting,

Theorem

There exists a unique MRA generated by an orthogonal scaling function $\varphi \in \mathcal{D}$, $\operatorname{supp} \widehat{\varphi} \subset B_0(0)$. It is Haar MRA.

p-adic analisis p-Adic Haar basis Refinement equation Refinable functions generating MRA

Is it possible a function φ with $\operatorname{supp} \widehat{\varphi} \not\subset B_0(0)$ to be an orthogonal scaling function?

Theorem

There exist MRAs with scaling functions φ such that $\operatorname{supp} \widehat{\varphi} \not\subset B_0(0)$.

Theorem

Let $\varphi \in \mathcal{D}$ be an orthogonal scaling function and $\widehat{\varphi}(0) \neq 0$. Then $\operatorname{supp} \widehat{\varphi} \subset B_0(0)$.

Corollary

There exists a unique MRA generated by an orthogonal scaling function. It is Haar MRA.

S. Albeverio, S. Evdokimov and M. S. *p-Adic multiresolution analysis and wavelet frames* J. Fourier Anal. Appl., 16 (2010), No. 5, 693-714

 Wavelets in different structures
 p-aic

 p-adic wavelets
 p-Aic

 Orthogonal p-adic wavelet bases
 Ref

 Non-orthogonal wavelet bases
 Ref

p-adic analisis p-Adic Haar basis Refinement equation Refinable functions generating MRA

Is it possible a function φ with $\operatorname{supp} \widehat{\varphi} \not\subset B_0(0)$ to be an orthogonal scaling function?

Theorem

There exist MRAs with scaling functions φ such that $\operatorname{supp} \widehat{\varphi} \not\subset B_0(0)$.

Theorem

Let $\varphi \in \mathcal{D}$ be an orthogonal scaling function and $\widehat{\varphi}(0) \neq 0$. Then $\operatorname{supp} \widehat{\varphi} \subset B_0(0)$.

Corollary

There exists a unique MRA generated by an orthogonal scaling function. It is Haar MRA.

S. Albeverio, S. Evdokimov and M. S. *p-Adic multiresolution analysis and wavelet frames* J. Fourier Anal. Appl., 16 (2010), No. 5, 693-714

 Wavelets in different structures p-adic wavelets
 p-adic an p-Adic H

 Orthogonal p-adic wavelet bases
 Refineme Refineme

p-adic analisis p-Adic Haar basis Refinement equation Refinable functions generating MRA

Is it possible a function φ with $\operatorname{supp} \widehat{\varphi} \not\subset B_0(0)$ to be an orthogonal scaling function?

Theorem

There exist MRAs with scaling functions φ such that $\operatorname{supp} \widehat{\varphi} \not\subset B_0(0)$.

Theorem

Let $\varphi \in \mathcal{D}$ be an orthogonal scaling function and $\widehat{\varphi}(0) \neq 0$. Then $\operatorname{supp} \widehat{\varphi} \subset B_0(0)$.

Corollary

There exists a unique MRA generated by an orthogonal scaling function. It is Haar MRA.

S. Albeverio, S. Evdokimov and M. S. *p-Adic multiresolution analysis and wavelet frames* J. Fourier Anal. Appl., 16 (2010), No. 5, 693-714

 Wavelets in different structures p-adic wavelets
 p-adic analisis

 p-Adic vavelets
 p-Adic Haar basis

 Orthogonal p-adic wavelet bases
 Refinable functions generating MRA

So, it is not possible to construct orthogonal wavelets based on a MRA generated by a scaling function $\varphi \in \mathcal{D}$ with $\operatorname{supp} \widehat{\varphi} \notin B_0(0)$.

▲□ ► < □ ► </p>

-

Are there non-Haar p-adic orthogonal wavelet bases?

S. Evdokimov and M. S. Description of p-adic orthogonal wavelet bases generated by periodic functions. (prepared for publication) What means "A wavelet basis is generated by the Haar MRA"? Haar MRA $\{V_j\}_{j\in\mathbb{Z}}, W_j := V_{j+1} \ominus V_j, L_2(\mathbb{Q}_p) = \bigoplus_{j\in\mathbb{Z}} W_j$

A collection of functions $\psi^{(\nu)} \in W_0$, $\nu = 1, \ldots, p-1$, such that $\{\psi^{(\nu)}(x-a), a \in I_p, \nu = 1, \ldots, p-1\}$ is an orthonormal basis for W_0 is called a standard set of Haar wavelet functions.

The corresponding wavelet system

$$\{p^{j/2}\psi^{(\nu)}(p^{-j}x-a), a \in I_p, j \in \mathbb{Z}, \nu = 1, \dots, p-1\}$$

is an orthonormal basis for $L_2(\mathbb{Q}_p)$. Such bases are called standard Haar bases.

Are there non-Haar p-adic orthogonal wavelet bases?

S. Evdokimov and M. S. Description of p-adic orthogonal wavelet bases generated by periodic functions. (prepared for publication) What means "A wavelet basis is generated by the Haar MRA"? Haar MRA $\{V_j\}_{j\in\mathbb{Z}}, W_j := V_{j+1} \ominus V_j, L_2(\mathbb{Q}_p) = \bigoplus_{j\in\mathbb{Z}} W_j$

A collection of functions $\psi^{(\nu)} \in W_0$, $\nu = 1, \ldots, p-1$, such that $\{\psi^{(\nu)}(x-a), a \in I_p, \nu = 1, \ldots, p-1\}$ is an orthonormal basis for W_0 is called a standard set of Haar wavelet functions.

The corresponding wavelet system

$$\{p^{j/2}\psi^{(\nu)}(p^{-j}x-a), a \in I_p, j \in \mathbb{Z}, \nu = 1, \dots, p-1\}$$

is an orthonormal basis for $L_2(\mathbb{Q}_p)$. Such bases are called standard Haar bases.

$$\begin{split} p &= 2, \ \psi(x) = \chi_2(\nu x/2) \mathbb{1}_{B_0(0)}(x), \ \psi_{ja}(x) := 2^{j/2} \psi(2^{-j}x - a) \\ \{\psi\} \text{ is a standard set of Haar wavelet functions.} \\ \{\psi_{ja}, a \in I_p, j \in \mathbb{Z}\} \text{ is a standard Haar basis} \\ \psi^{(1)}(x) &= \sqrt{2} \psi(x/2), \quad \psi^{(2)}(x) = \sqrt{2} \psi((x - 1)/2). \\ \{\psi_{ja}^{(\nu)}, a \in I_p, j \in \mathbb{Z}, \nu = 1, 2\} = \{\psi_{ja}, a \in I_p, j \in \mathbb{Z}\} \\ \{\psi^{(1)}, \psi^{(2)}_{ja}\} \text{ is not a standard set of Haar wavelet functions.} \\ \{\psi_{ja}^{(1)}, \psi_{ja}^{(2)}, a \in I_p, j \in \mathbb{Z}\} \text{ is a standard Haar basis} \\ \psi^{(2,1)}(x) &= \sqrt{2} \psi^{(2)}(x/2), \quad \psi^{(2,2)}(x) = \sqrt{2} \psi^{(2)}((x - 1)/2), \end{split}$$

 $\{\psi_{ja}^{(1)},\psi_{ja}^{(2,1)},\psi_{ja}^{(2,2)},a\in I_p,j\in\mathbb{Z}\}$ is a standard Haar basis.

$$\widetilde{\psi}^1 = \frac{1}{\sqrt{2}}(\psi^{(1)} + \psi^{(2,1)}), \quad \widetilde{\psi}^2 = \frac{1}{\sqrt{2}}(\psi^{(1)} - \psi^{(2,1)}), \quad \widetilde{\psi}^3 = \psi^{(2,2)}.$$

 $\{\widetilde{\psi}_{ja}^1, \widetilde{\psi}_{ja}^1, \widetilde{\psi}_{ja}^1, a \in I_p, j \in \mathbb{Z}\}$ is not a standard Haar basis.

The vector-function $\widetilde{\Psi} = (\widetilde{\psi}^1, \widetilde{\psi}^2, \widetilde{\psi}^3)^T$ is unitary equivalent to a vector-function generating a standard Haar basis.

$$\widetilde{\psi}^{(1,1)}(x) = \sqrt{2}\widetilde{\psi}^{(1)}(x/2), \quad \widetilde{\psi}^{(1,2)}(x) = \sqrt{2}\widetilde{\psi}^{(1)}((x-1)/2).$$

The vector-function $\widetilde{\Psi}' = (\widetilde{\psi}^{(1,1)}, \widetilde{\psi}^{(1,2)}, \widetilde{\psi}^{(2)}, \widetilde{\psi}^{(3)})^T$ does not generate a standard Haar basis, and $\widetilde{\Psi}'$ is not unitary equivalent to a vector-function generating a standard Haar basis.

Let us say that a basis obtained in this way is a "damaged " Haar basis.

All non-standard orthogonal *p*-adic wavelet bases we saw in the literature are "damaged " Haar bases.

J.J. Benedetto, and R.L. Benedetto, A wavelet theory for local fields and related groups, The Journal of Geometric Analysis 3 (2004) 423–456

Khrennikov, A. Yu. and Shelkovich, V. M. Non-Haar p-adic wavelets and pseudodifferential operators, (Russian) Dokl. Akad. Nauk 418 (2008), no. 2, 167–170

Definition

Two vector-functions Ψ , Ψ' generating orthonormal wavelet bases is said to be wavelet equivalent if there exist vector-functions $\Psi^{(0)}, \ldots, \Psi^{(N)}$ such that $\Psi^{(0)} = \Psi$, $\Psi^{(N)} = \Psi'$, and for every j > 0either $\Psi^{(j)}$ is unitary equivalent to $\Psi^{(j-1)}$ or $\Psi^{(j)}$ and $\Psi^{(j-1)}$ generate the same orthonormal wavelet bases.

Theorem

Any periodic vector-function generating orthonormal wavelet bases is wavelet equivalent to a standard set of Haar wavelet functions.

Theorem

There exists a vector-function generating orthonormal wavelet bases which is not a "damaged " Haar bases.

Theorem

If periodic functions $\psi^{(1)}, \ldots, \psi^{(r)}$ generate orthonormal wavelet bases, then r is divisible by p - 1, in particular, $r \ge p - 1$.

Theorem

Any periodic vector-function generating orthonormal wavelet bases is wavelet equivalent to a standard set of Haar wavelet functions.

Theorem

There exists a vector-function generating orthonormal wavelet bases which is not a "damaged " Haar bases.

Theorem

If periodic functions $\psi^{(1)}, \ldots, \psi^{(r)}$ generate orthonormal wavelet bases, then r is divisible by p - 1, in particular, $r \ge p - 1$.

Theorem

If a wavelet system generated by p^{m} -periodic functions $\psi^{(1)}, \ldots, \psi^{(r)}$, $m \in \mathbb{Z}_{+}$, is orthonormal, then $r \leq (p-1)p^{m-1}$. In particular, if a function ψ is 1-periodic, then the wavelet system generated by ψ cannot be orthogonal.

Theorem

If functions $\psi^{(1)}, \ldots, \psi^{(r)} \in W_m$, $m \in \mathbb{Z}_+$, generate orthonormal wavelet bases, then $r = (p-1)p^m$.

Theorem

If functions $\psi^{(1)}, \ldots, \psi^{(r)}$ generate orthonormal wavelet bases, $\psi^{(\nu)} \in W_{j_{\nu}}$, then $\sum_{\nu=1}^{r} p^{m-j_{\nu}} = (p-1)p^{m}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Biorthogonal wavelets on \mathbb{R} Biorthogonal wavelets on \mathbb{Q}_p p-Adic Riesz wavelet bases

Biorthogonal wavelets on $\mathbb R$

To construct biorthogonal wavelets on \mathbb{R} one starts with two dual MRAs $\{V_j\}_{j\in\mathbb{Z}}, \{\widetilde{V}_j\}_{j\in\mathbb{Z}}$ generated by scaling functions φ , $\widetilde{\varphi}$ whose integer translations $\varphi(\cdot - n)$, $\widetilde{\varphi}(\cdot - n)$ are biorthogonal and form Riesz bases for V_0 , \widetilde{V}_0 respectively (instead of the requirement: $\{\varphi(\cdot - n)\}_{n\in\mathbb{Z}}$ forms an orthonormal basis for V_0 .)

This leads to the construction of biorthogonal wavelets $\{2^{j/2}\psi(2^jx-n), j, n \in \mathbb{Z}\}, \{2^{j/2}\widetilde{\psi}(2^jx-n), j, n \in \mathbb{Z}\}$

Biorthogonal wavelets on \mathbb{R} Biorthogonal wavelets on \mathbb{Q}_p p-Adic Riesz wavelet bases

Theorem

A function $\varphi \in \mathcal{D}$, $\operatorname{supp} \varphi \subset B_N(0)$, $\operatorname{supp} \widehat{\varphi} \subset B_M(0)$, $N, M \ge 0$, $\widehat{\varphi}(0) \ne 0$, generates a MRA if and only if (1) φ is refinable; (2) there exist at least $p^{M+N} - p^N$ integers n such that $0 \le n < p^{M+N}$ and $\widehat{\varphi}\left(\frac{n}{p^M}\right) = 0$.

S. Albeverio, S. Evdokimov and M. S. *p-Adic multiresolution analysis and wavelet frames*, J. Fourier Anal. Appl., 16 (2010), No. 5, 693-714

ls it possible to construct non-Haar MRA-based biorthogonal wavelets?

E. King and M. S. On p-adic biorthogonal wavelet bases. (in preparation)

There exist dual pairs of non-Haar MRAs $\{V_j\}_{j\in\mathbb{Z}}, \{\widetilde{V}_j\}_{j\in\mathbb{Z}}$ generated respectively by scaling functions $\varphi, \widetilde{\varphi}$ whose I_p -translations $\varphi(\cdot - a), \widetilde{\varphi}(\cdot - a)$ are biorthogonal.

Theorem

If biorthogonal p-adic wavelet systems $\{p^{j/2}\psi^{(\nu)}(p^{-j}x-a), a \in I_p, j \in \mathbb{Z}, \nu = 1, \dots, p-1\}, \{p^{j/2}\widetilde{\psi}^{(\nu)}(p^{-j}x-a), a \in I_p, j \in \mathbb{Z}, \nu = 1, \dots, p-1\}$ are generated by dual MRAs $\{V_j\}_{j\in\mathbb{Z}}, \{\widetilde{V}_j\}_{j\in\mathbb{Z}}$, then each of MRAs is the Haar MRA.

Biorthogonal wavelets on \mathbb{R} Biorthogonal wavelets on \mathbb{Q}_p p-Adic Riesz wavelet bases

Is it possible to construct MRA-based non-orthogonal wavelets generated by a scaling function φ with supp $\widehat{\varphi} \not\subset B_0(0)$?

An infinite family of functions $\varphi_{M,N} \in \mathcal{D}$ with $\operatorname{supp} \widehat{\varphi}_{M,N} \subset B_M(0)$, $\operatorname{supp} \widehat{\varphi}_{M,N} \not\subset B_0(0)$ and the corresponding wavelet functions $\psi_{M,N}^{(\nu)}$, $\nu = 1, \ldots, p-1$, was constructed explicitly.

Theorem

For integers $M, N \ge 0$, the function $\varphi_{M,N}$ generates an MRA if and only if $M \le \frac{p^N-1}{p-1} - N$, Moreover, in this case, the functions $p^{-j/2}\psi_{M,N}^{(\nu)}(p^jx-a), j \in \mathbb{Z}, a \in I_p, \nu = 1, \dots, p-1$, form a Riesz basis for $L_2(\mathbb{Q}_p)$ if and only if $M = \frac{p^N-1}{p-1} - N$.

S. Albeverio, S. Evdokimov, and M. Skopina, p-Adic Nonorthogerall, Wazeleta 같 한 글 주요@ M. Skopina p-Adic wavelets

Biorthogonal wavelets on \mathbb{R} Biorthogonal wavelets on \mathbb{Q}_p p-Adic Riesz wavelet bases

Is it possible to construct MRA-based non-orthogonal wavelets generated by a scaling function φ with supp $\widehat{\varphi} \not\subset B_0(0)$?

An infinite family of functions $\varphi_{M,N} \in \mathcal{D}$ with $\operatorname{supp} \widehat{\varphi}_{M,N} \subset B_M(0)$, $\operatorname{supp} \widehat{\varphi}_{M,N} \not\subset B_0(0)$ and the corresponding wavelet functions $\psi_{M,N}^{(\nu)}$, $\nu = 1, \ldots, p-1$, was constructed explicitly.

Theorem

For integers $M, N \ge 0$, the function $\varphi_{M,N}$ generates an MRA if and only if $M \le \frac{p^N-1}{p-1} - N$, Moreover, in this case, the functions $p^{-j/2}\psi_{M,N}^{(\nu)}(p^jx-a), j \in \mathbb{Z}, a \in I_p, \nu = 1, \dots, p-1$, form a Riesz basis for $L_2(\mathbb{Q}_p)$ if and only if $M = \frac{p^N-1}{p-1} - N$.

S. Albeverio, S. Evdokimov, and M. Skopina, p-Adic Nonorthogonal Wavelet 🚊 👘 🤤 🧑

Biorthogonal wavelets on $\mathbb R$ Biorthogonal wavelets on $\mathbb Q_p$ p-Adic Riesz wavelet bases

Thank you for your attention!

Image: A image: A

-

э