Minimal decomposition of linear fractional transformations on the projective line over \mathbb{Q}_p

Lingmin LIAO (Université Paris-Est Créteil) (joint with Ai-Hua Fan, Shi-Lei Fan and Yue-Fei Wang)

p-Adic Methods for Modeling of Complex Systems

ZiF, Bielefeld April 19th 2013

2 Affine polynomial dynamical systems in \mathbb{Q}_p

3 P-adic linear frctional transformations

Ideas and methods

通 と く ヨ と く ヨ と

э

Introduction

Lingmin LIAO University Paris-East Créteil Minimal decomposition of linear fractional transf. on $\mathbb{P}^1(\mathbb{Q}_p)$ 3/36

< 同 > < 国 > < 国 >

э

I. The *p*-adic numbers

• $p \ge 2$ a prime number.

$$orall n \in \mathbb{N}$$
, $n = \sum_{i=0}^N a_i p^i$ $(a_i = 0, 1, \cdots, p-1)$

• Ring \mathbb{Z}_p of *p*-adic integers :

$$\mathbb{Z}_p \ni x = \sum_{i=0}^{\infty} a_i p^i.$$

• Field \mathbb{Q}_p of *p*-adic numbers : fraction field of \mathbb{Z}_p :

$$\mathbb{Q}_p \ni x = \sum_{i=v(x)}^{\infty} a_i p^i, \quad (\exists v(x) \in \mathbb{Z}).$$

Absolute value : $|x|_p = p^{-v(x)}$, metric : $d(x, y) = |x - y|_p$.

II. Arithmetic in \mathbb{Q}_p

Addition and multiplication : similar to the decimal way. "Carrying" from left to right.

Example :
$$x=(p-1)+(p-1)\times p+(p-1)\times p^2+\cdots$$
 , then
 $\bullet \ x+1=0.$ So,

$$-1 = (p-1) + (p-1) \times p + (p-1) \times p^2 + \cdots$$

•
$$2x = (p-2) + (p-1) \times p + (p-1) \times p^2 + \cdots$$
.

We also have substraction and division.

Then we can define polynomials and rational maps.

III. Equicontinuous dynamics

A dynamical system is a couple (X, T) where $T : X \to X$ is a transformation on the space X. Example : (\mathbb{Z}_p, f) with $f \in \mathbb{Z}_p[x]$ being a polynomial.

We say $T: X \to X$ is equicontinuous if

 $\forall \epsilon > 0, \exists \delta > 0 \ \text{ s. t. } \ d(T^nx,T^ny) < \epsilon \ (\forall n \geq 1, \forall d(x,y) < \delta).$

Theorem

Let X be a compact metric space and $T: X \to X$ be an *equicontinuous* transformation. Then the following statements are equivalent : (1) T is **minimal** (every orbit is dense).

(2) T is **uniquely ergodic** (there is a unique invariant measure).

- (3) T is **ergodic** for any/some invariant measure with X as its support.
 - Fact : 1-Lipschitz transformation is equicontinuous.
 - Fact : Polynomial $f \in \mathbb{Z}_p[x] : \mathbb{Z}_p \to \mathbb{Z}_p$ is equicontinuous.

4月 4日 4日 4日 1

IV. Study on *p*-adic dynamical dystems

- Oselies-Zieschang 1975 : automorphisms of \mathbb{Z}_p Herman-Yoccoz 1983 : complex *p*-adic dynamical systems Volovich 1987 : *p*-adic string theory
- Lubin 1994; Zelenov 2013 : *p*-adic analytic transformations.
- Thiran-Verstegen-Weyers 1989; Woodcock-Smart 1998; Fan-Liao-Wang-Zhou 2007; Benedetto-Briend-Perdry 2007; Kingsbery-Levin-Preygel-Silva 2009 : Chaotic *p*-adic (polynomial) dynamical systems.
- Anashin 1994 : 1-Lipschitz transformation (Mahler series) Yurova 2010, 2012; Anashin-Khrennikov-Yurova 2011, 2012; Lin-Shi-Yang 2012; Jeong 2012; Khrennikov-Yurova 2013 : 1-Lipschitz transformation (Van der Put series)
- Coelho-Parry 2001 : ax and distribution of Fibonacci numbers Gundlach-Khrennikov-Lindahl 2001 : x^n Diarra-Sylla 2013 : Chebyshev polynomials
- · · · · · (see Vivaldi's database)

イボト イラト イラト

Affine polynomial dynamical systems on \mathbb{Q}_p

I. Polynomial dynamical systems on \mathbb{Z}_p

- Let $f \in \mathbb{Z}_p[x]$ be a polynomial with coefficients in \mathbb{Z}_p .
- Polynomial dynamical systems : $f : \mathbb{Z}_p \to \mathbb{Z}_p$, noted as (\mathbb{Z}_p, f) .

Theorem (Ai-Hua Fan, L 2011) minimal decomposition

Let $f \in \mathbb{Z}_p[x]$ with $\deg f \ge 2$. The space \mathbb{Z}_p can be decomposed into three parts :

$$\mathbb{Z}_p = A \sqcup B \sqcup C,$$

where

- A is the finite set consisting of all periodic orbits;
- $B := \sqcup_{i \in I} B_i$ (*I* finite or countable)
 - $\rightarrow B_i$: finite union of balls,
 - $\rightarrow f: B_i \rightarrow B_i$ is minimal;
- C is attracted into $A \sqcup B$.

(四) (日) (日)

II. Conjugate classes

Given a positive integer sequence $(p_s)_{s\geq 0}$ such that $p_s|p_{s+1}$. Profinite groupe : $\mathbb{Z}_{(p_s)} := \lim_{\leftarrow} \mathbb{Z}/p_s\mathbb{Z}$.

Odometer : The transformation $\tau : x \mapsto x + 1$ on $\mathbb{Z}_{(p_s)}$.

Theorem (J.-L. Chabert, A.-H. Fan, Y. Fares 2009)

Let E be a compact set in \mathbb{Z}_p and $f:E\to E$ a 1-lipschitzian transformation. If the dynamical system (E,f) is minimal, then

• (E, f) is conjuguate to the odometer $(\mathbb{Z}_{(p_s)}, \tau)$ where (p_s) is determined by the structure of E.

Theorem (Fan-L 2011 : Minimal components of polynomials)

Let $f \in \mathbb{Z}_p[X]$ be a polynomial and $O \subset \mathbb{Z}_p$ a clopen set, $f(O) \subset O$. Suppose $f : O \to O$ is minimal.

- If $p \ge 3$, then $(O, f|_O)$ is conjugate to the odometer $(\mathbb{Z}_{(p_s)}, \tau)$ where $(p_s)_{s\ge 0} = (k, kd, kdp, kdp^2, \dots) \quad (1 \le k \le p, d|(p-1)).$
- If p = 2, then $(O, f|_O)$ is conjugate to $(\mathbb{Z}_2, x + 1)$.

III. Affine polynomials on \mathbb{Z}_p Let $T_{a,b}x = ax + b$ $(a, b \in \mathbb{Z}_p)$. Denote

 $\mathbb{U} = \{ z \in \mathbb{Z}_p : |z| = 1 \}, \quad \mathbb{V} = \{ z \in \mathbb{U} : \exists m \ge 1, \text{s.t. } z^m = 1 \}.$

Easy cases :

- $a \in \mathbb{Z}_p \setminus \mathbb{U} \Rightarrow$ one attracting fixed point b/(1-a).
- $a=1, b=0 \ \Rightarrow \text{ every point is fixed.}$
- a ∈ V \ {1} ⇒ every point is on a ℓ-periodic orbit, with ℓ the smallest integer ≥ 1 such that a^ℓ = 1.

Theorem (AH. Fan, MT. Li, JY. Yao, D. Zhou 2007) Case $p \ge 3$:

•
$$a \in (\mathbb{U} \setminus \mathbb{V}) \cup \{1\}, v_p(b) < v_p(1-a) \Rightarrow p^{v_p(b)} \text{ minimal parts.}$$

$$\ \, {\mathfrak S} \ \, a \in {\mathbb U} \setminus {\mathbb V}, \ \, v_p(b) \geq v_p(1-a) \Rightarrow ({\mathbb Z}_p, T_{a,b}) \ \, {\rm is \ \, conjugate \ to \ \, } ({\mathbb Z}_p, ax).$$

Decomposition : $\mathbb{Z}_p = \{0\} \sqcup \sqcup_{n \ge 1} p^n \mathbb{U}.$

(1) One fixed point $\{0\}$.

(2) All $(p^n \mathbb{U}, ax)(n \ge 0)$ are conjugate to (\mathbb{U}, ax) .

For $(\mathbb{U}, T_{a,0}) : p^{v_p(a^{\ell}-1)}(p-1)/\ell$ minimal parts, with ℓ the smallest integer ≥ 1 such that $a^{\ell} \equiv 1 \pmod{p}$.

Two typical decompositions of \mathbb{Z}_p

Theorem (Fan-Li-Yao-Zhou 2007) Case p = 2:

•
$$a \in (\mathbb{U} \setminus \mathbb{V}) \cup \{1\}, v_p(b) < v_p(1-a).$$

• $v_p(b) = 0 \Rightarrow p^{v_p(a+1)-1}$ minimal parts.
• $v_p(b) > 0 \Rightarrow p^{v_p(b)}$ minimal parts.
• $a \in \mathbb{U} \setminus \mathbb{V}, v_p(b) \ge v_p(1-a)$
 $\Rightarrow (\mathbb{Z}_p, T_{a,b})$ is conjugate to $(\mathbb{Z}_p, ax).$
Decomposition : $\mathbb{Z}_p = \{0\} \sqcup \sqcup_{n \ge 1} p^n \mathbb{U}.$
(1) One fixed point $\{0\}.$
(2) All $(p^n \mathbb{U}, ax)(n \ge 0)$ are conjugate to $(\mathbb{U}, ax).$
For $(\mathbb{U}, T_{a,0}) : 2^{v_2(a^2-1)-2}$ minimal parts.

Remark : For the case p = 2, all minimal parts (except for the periodic orbits) are conjugate to $(\mathbb{Z}_2, x + 1)$.

IV. Affine polynomials on \mathbb{Q}_p Let φ be an affine map defined by

$$\varphi(x) = ax + b \ (a, b \in \mathbb{Q}_p, a \neq 0, (a, b) \neq (1, 0)).$$

If $|a| \neq 1$: easy! For $|a| = 1$, we have the following **conjugacy**
• $a \neq 1$:

• a = 1 :

:

V. Affine polynomials on \mathbb{Q}_p -continued

Theorem (AH. Fan, Y. Fares 2011)

If $K = \mathbb{Q}_p$, then

- \mathbb{Z}_p is minimal.
- $p^n \mathbb{U}$ contains $p^{n-1}(p-1)$ minimal balls with radius 1.

• $\varphi(x) = ax$ (a is not a root of unity) : $\mathbb{Q}_p = \{0\} \cup \bigcup_{n \in \mathbb{Z}} p^n \mathbb{U}$.

- 0 is fixed.
- All subsystems on pⁿU are conjugate to (U, φ).

For (\mathbb{U}, φ) : (1) Case $p \ge 3 : p^{v_p(a^{\ell}-1)}(p-1)/\ell$ minimal balls of same radius, with ℓ the smallest integer ≥ 1 such that $a^{\ell} \equiv 1 \pmod{p}$. (2) Case $p = 2 : 2^{v_2(a^2-1)-2}$ minimal balls of same radius.

Two typical decompositions of \mathbb{Q}_p

*P***-adic linear frctional**

transformations

I. Projective line over \mathbb{Q}_p For $(x_1, y_1), (x_2, y_2) \in \mathbb{Q}_p^2 \setminus \{(0, 0)\}$, we say that $(x_1, y_1) \sim (x_2, y_2)$ if $\exists \lambda \in \mathbb{Q}_p^*$ s.t.

$$x_1 = \lambda x_2$$
 and $y_1 = \lambda y_2$.

Projective line over \mathbb{Q}_p :

$$\mathbb{P}^1(\mathbb{Q}_p) := (\mathbb{Q}_p^2 \setminus \{(0,0)\}) / \sim$$

Spherical metric : Let $P = [x_1, y_1], Q = [x_2, y_2] \in \mathbb{P}^1(\mathbb{Q}_p)$, define

$$\rho(P,Q) = \frac{|x_1y_2 - x_2y_1|_p}{\max\{|x_1|_p, |y_1|_p\} \max\{|x_2|_p, |y_2|_p\}}$$

Viewing $\mathbb{P}^1(\mathbb{Q}_p)$ as $K \cup \{\infty\}$, for $z_1, z_2 \in \mathbb{Q}_p \cup \{\infty\}$ we define

$$\rho(z_1, z_2) = \frac{|z_1 - z_2|_p}{\max\{|z_1|_p, 1\} \max\{|z_2|_p, 1\}} \quad \text{if } z_1, z_2 \in \mathbb{Q}_p,$$

and

$$\rho(z,\infty) = \left\{ \begin{array}{ll} 1, & \text{if } |z|_p \leq 1 \, ; \\ 1/|z|_p, & \text{if } |z|_p > 1. \end{array} \right.$$

II. Linear fractional transformations Let

$$\phi(x) = \frac{ax+b}{cx+d} \quad \text{with } a, b, c, d \in \mathbb{Q}_p, \ ad-bc \neq 0,$$

which induces an 1-to-1 map $\phi : \mathbb{P}^1(\mathbb{Q}_p) \mapsto \mathbb{P}^1(\mathbb{Q}_p)$.

- $\phi(-d/c) = \infty$, and $\phi(\infty) = a/c$.
- ϕ is a composition of $\phi_1(x) = \alpha x, \phi_2(x) = x + \beta, \phi_3(x) = x \mapsto 1/x.$
- if $\mathbb{D}(a,r)$ is a disk in $\mathbb{P}^1(\mathbb{Q}_p)$, then $\phi(\mathbb{D}(a,r))$ is also a disk. (a disk in $\mathbb{P}^1(\mathbb{Q}_p)$ is a disk in \mathbb{Q}_p or a complement of a disk in \mathbb{Q}_p .)

•
$$\phi_1(\mathbb{D}(a,r)) = \mathbb{D}(\alpha a, r|\alpha|_p).$$

- **3** if $0 \in \mathbb{D}(a, r)$, $\phi_3(\mathbb{D}(a, r)) = \mathbb{P}^1(K) \setminus \overline{\mathbb{D}}(0, 1/r)$.
- if $0 \notin \mathbb{D}(a,r)$, $\phi_3(\mathbb{D}(a,r)) = \mathbb{D}(a^{-1},r|a|_p^{-2})$.

III. Some studies on linear fractional transformations

Diao-Silva 2011 : There is no minimal rational maps on Q_p.
 (Comments : They did not include the infinity point. We need study

the rational maps on $\mathbb{P}^1(\mathbb{Q}_p)$.)

• Dragovich-Khrennikov-Mihajlovic 2007 : Linear fractional transformations on adelic space.

IV. Fixed points and dynamics

The dynamics of ϕ depends on its fixed points which are the solution of

$$\frac{ax+b}{cx+d} = x \Leftrightarrow cx^2 + (d-a)x - b = 0.$$

Discriminant : $\Delta = (d-a)^2 + 4bc$.

- If $\Delta = 0$, then ϕ has only **one fixed point** x_0 in \mathbb{Q}_p and $\phi(x)$ is conjugate to a translation $\psi(x) = x + \alpha$ for some $\alpha \in \mathbb{Q}_p$ by $g(x) = \frac{1}{x x_0}$.
- If $\Delta \neq 0$ and $\sqrt{\Delta} \in \mathbb{Q}_p$, then ϕ has two fixed points $x_1, x_2 \in \mathbb{Q}_p$ and ϕ is conjugate to a multiplication $x \mapsto \beta x$ for some $\beta \in \mathbb{Q}_p$ by $g(x) = \frac{x - x_2}{x - x_1}$.
- If $\Delta \neq 0$ and $\sqrt{\Delta} \notin \mathbb{Q}_p$, then ϕ has **no fixed point** in \mathbb{Q}_p . But ϕ has two fixed points $x_1, x_2 \in \mathbb{Q}_p(\sqrt{\Delta})$. So we will study the dynamics of ϕ on $\mathbb{P}^1(\mathbb{Q}_p(\sqrt{\Delta}))$ then its restriction on $\mathbb{P}^1(\mathbb{Q}_p)$.

V. Notations

- K is a finite extension of \mathbb{Q}_p .
- Still denote by $|\cdot|_p$ the extended absolute value of K.
- Degree : $d = [K : \mathbb{Q}_p]$. Ramification index : e
- Valuation function : $v_p(x) := -\log_p(|x|_p)$. $\operatorname{Im}(v_p) = \frac{1}{e}\mathbb{Z}$.
- $\mathcal{O}_K := \{x \in K : |x|_p \le 1\}$: the local ring of K, $\mathcal{P}_K := \{x \in K : |x|_p < 1\}$: its maximal ideal.
- Residual field : $\mathbb{K} = \mathcal{O}_K / \mathcal{P}_K$. Then $\mathbb{K} = \mathbb{F}_{p^f}$, with f = d/e.

Quadratic extensions :

• 7 quadratic extensions of \mathbb{Q}_2 :

$$\mathbb{Q}_2(\sqrt{-1}), \ \mathbb{Q}_2(\sqrt{\pm 2}), \ \mathbb{Q}_2(\sqrt{\pm 3}), \ \mathbb{Q}_2(\sqrt{\pm 6}).$$

• 3 quadratic extensions of $\mathbb{Q}_p (p \ge 3)$:

$$\mathbb{Q}_p(\sqrt{p}), \ \mathbb{Q}_p(\sqrt{N_p}), \ \mathbb{Q}_p(\sqrt{pN_p}),$$

where N_p is the smallest quadratic non-residue module p.

VI. Uniformizer and representation

An element $\pi \in K$ is a uniformizer if $v_p(\pi) = 1/e$.

Define $v_{\pi}(x) := e \cdot v_p(x)$ for $x \in K$. Then $\operatorname{Im}(v_{\pi}) = \mathbb{Z}$, and $v_{\pi}(\pi) = 1$.

Let $C = \{c_0, c_1, \ldots, c_{p^f-1}\}$ be a fixed complete set of representatives of the cosets of \mathcal{P}_K in \mathcal{O}_K . Then every $x \in K$ has a unique π -adic expansion of the form

$$x = \sum_{i=i_0}^{\infty} a_i \pi^i,$$

where $i_0 \in \mathbb{Z}$ and $a_i \in C$ for all $i \geq i_0$.

Example : For $\mathbb{Q}_p(\sqrt{p})$ $(p \geq 3)$, take $\pi = \sqrt{p}$, and

$$x = a_0 + a_1\sqrt{p} + a_2p + a_3p^{3/2} + a_4p^2 + \cdots$$

VII. Minimal decomposition (ϕ admits no fixed point)

Theorem (AH. Fan, SL. Fan, L, YF. Wang (preprint))

Suppose that ϕ has no fixed points in $\mathbb{P}^1(\mathbb{Q}_p)$ and $\phi^n \neq id$ for each integer n > 0. Then

- the system (P¹(Q_p), φ) is decomposed as a finite number of minimal subsystems;
- Ithese minimal subsystems are topologically conjugate to each other;
- Ithe number of minimal subsystems is determined by the number

$$\lambda := \frac{(a+d) + \sqrt{\Delta}}{(a+d) - \sqrt{\Delta}}.$$

Denote

- $K = \mathbb{Q}_p(\sqrt{\Delta})$ be the quadratic extension of \mathbb{Q}_p generated by $\sqrt{\Delta}$.
- π be an uniformizer of K
- \mathbb{K} be the residue field of K.
- ℓ be the order in the group \mathbb{K}^* of λ .

VIII. The case $p \ge 3$

Theorem (Fan-Fan-L-Wang, $K = \mathbb{Q}_p(\sqrt{N_p})$ is unramified)

The dynamics $(\mathbb{P}^1(\mathbb{Q}_p), \phi)$ is decomposed as $((p+1)p^{v_p(\lambda^{\ell}-1)-1})/\ell$ minimal subsystems. Each subsystem is topologically conjugate to the adding machine on an odometer $\mathbb{Z}_{(p_s)}$ with $(p_s) = (\ell, \ell p, \ell p^2, \cdots)$.

Theorem (Fan-Fan-L-Wang, $K = \mathbb{Q}_p(\sqrt{p}), \mathbb{Q}_p(\sqrt{pN_p})$ is ramified)

(1) If $|a + d|_p > |\sqrt{\Delta}|_p$, then $\lambda = 1 \pmod{\pi}$. The dynamics $(\mathbb{P}^1(\mathbb{Q}_p), \phi)$ is decomposed as $2p^{(v_\pi(\lambda^p - 1) - 3)/2}$ minimal subsystems. Moreover, each minimal subsystem is conjugate to the adding machine on the odometer $\mathbb{Z}_{(p_s)}$ with $(p_s) = (1, p, p^2, \cdots)$.

(2) If $|a + d|_p < |\sqrt{\Delta}|_p$, then $\lambda = -1 \pmod{\pi}$. The dynamics $(\mathbb{P}^1(\mathbb{Q}_p), \phi)$ is decomposed as $p^{(v_{\pi}(\lambda^p+1)-3)/2}$ minimal subsystems. Moreover, each minimal subsystem is conjugate to the adding machine on the odometer $\mathbb{Z}_{(p_s)}$ with $(p_s) = (2, 2p, 2p^2, \cdots)$.

- 4 同 2 4 日 2 4 日 2

IX. The case p = 2

Theorem (FFLW, $K = \mathbb{Q}_2(\sqrt{-3})$ is unramified)

The dynamical system $(\mathbb{P}^1(\mathbb{Q}_2), \phi)$ is decomposed as $3 \cdot 2^{v_2(\lambda^{2\ell}-1)-2}/\ell$ minimal subsystems. Moreover, each minimal system is conjugate to the adding machine on the odometer $\mathbb{Z}_{(p_s)}$ with $(p_s) = (\ell, \ell 2, \ell 2^2, \cdots)$.

Theorem (FFLW, $K = \mathbb{Q}_2(\sqrt{2}), \mathbb{Q}_2(\sqrt{-2}), \mathbb{Q}_2(\sqrt{-6}), \mathbb{Q}_2(\sqrt{6})$ ramified)

(1) If $|a + d|_2 > |\sqrt{\Delta}|_2$, then $v_{\pi}(\lambda - 1) \ge 3$ is odd and the dynamical system $(\mathbb{P}^1(\mathbb{Q}_2), \phi)$ is decomposed as $2^{(v_{\pi}(\lambda - 1) - 1)/2}$ minimal subsystems.

(2) If $|a + d|_2 < |\sqrt{\Delta}|_2$, then $v_{\pi}(\lambda + 1) \ge 3$ is odd and the dynamical system $(\mathbb{P}^1(\mathbb{Q}_2), \phi)$ is decomposed as $2^{(v_{\pi}(\lambda+1)-1)/2}$ minimal subsystems. Moreover, each minimal system is conjugate to the adding machine on the odometer $\mathbb{Z}_{(p_s)}$ with $(p_s) = (1, 2, 2^2, \cdots)$.

X. The case p = 2 (continued)

Theorem (FFLW, $K = \mathbb{Q}_2(\sqrt{-1}), \mathbb{Q}_2(\sqrt{3})$ is ramified)

(1) If $|a + d|_2 = |\sqrt{\Delta}|_2$, $v_{\pi}(\lambda^2 + 1) \ge 2$ is even and the system $(\mathbb{P}^1(\mathbb{Q}_2), \phi)$ is decomposed as $2^{(v_{\pi}(\lambda^2+1)-2)/2}$ minimal subsystems.

(2) If $|a + d|_2 > |\sqrt{\Delta}|_2$, then $v_{\pi}(\lambda - 1) \ge 4$ is even and the system $(\mathbb{P}^1(\mathbb{Q}_2), \phi)$ is decomposed as $2^{v_{\pi}(\lambda - 1)/2}$ minimal subsystems.

(3) If $|a + d|_2 < |\sqrt{\Delta}|_2$, $v_{\pi}(\lambda + 1) \ge 4$ is even and the system $(\mathbb{P}^1(\mathbb{Q}_2), \phi)$ is decomposed as $2^{v_{\pi}(\lambda+1)/2}$ minimal subsystems. Moreover, each minimal system is conjugate to the adding machine on the odometer $\mathbb{Z}_{(p_s)}$ with $(p_s) = (1, 2, 2^2, \cdots)$.

XI. Minimal (ergodic) conditions

Corollary (FFLW, case $p \ge 3$)

The system $(\mathbb{P}^1(\mathbb{Q}_p),\phi)$ is minimal if and only if one of the following conditions satisfied

(1)
$$K = \mathbb{Q}_p(\sqrt{\Delta})$$
 is unramified, $\ell = p + 1$ and $v_p(\lambda^{\ell} - 1) = 1$,

(2)
$$K = \mathbb{Q}_p(\sqrt{\Delta})$$
 is ramified and $v_{\pi}(\lambda^p + 1) = 3$.

Corollary (FFLW, case p = 2)

The system $(\mathbb{P}^1(\mathbb{Q}_2),\phi)$ is minimal if and only if one of the following conditions satisfied

(1)
$$K = \mathbb{Q}_2(\sqrt{\Delta}) = \mathbb{Q}_2(\sqrt{-3}), \ \ell = 3 \text{ and } v_2(\lambda^{2\ell} - 1) = 2,$$

(2)
$$K = \mathbb{Q}_2(\sqrt{\Delta}) = \mathbb{Q}_2(\sqrt{-1}), \mathbb{Q}_2(\sqrt{3}), |a+b|_2 = |\sqrt{\Delta}|_2$$
 and $v_{\pi}(\lambda^2 + 1) = 2.$

Ideas and methods

・ 同 ト ・ ヨ ト ・ ヨ ト

3

I. Conjugacy and restriction

Let x_1, x_2 be the two fixed points in $K \setminus \mathbb{Q}_p$. Let $g(x) = \frac{x - x_2}{x - x_1}$. Denote $\hat{K} = \mathbb{P}^1(K)$. Remark that $\hat{\mathbb{Q}}_p = \mathbb{P}^1(\mathbb{Q}_p)$ is invariant under ϕ .

Step I : Do minimal decomposition of $(K, \lambda x)$. Step II : Find $g(\hat{\mathbb{Q}}_p)$ and determine the restriction $(g(\hat{\mathbb{Q}}_p), \lambda x)$. Step III : Go back to $\hat{\mathbb{Q}}_p$.

II. Methods for minimal decomposition of $\mathbb{Z}_p, \mathbb{Q}_p, K$.

Fan, Li, Yao, Zhou : Fourier analysis.

Our methodes :

Theorem (Anashin 1994, Chabert, Fan and Fares 2009)

Let $X \subset \mathcal{O}_K$ be a compact set. $\varphi: X \to X$ is minimal \Leftrightarrow $\varphi_k: X/\pi^k \mathcal{O}_K \to X/\pi^k \mathcal{O}_K$ is minimal for all $k \ge 1$.

Predicting the behavior of φ_{k+1} by the structure of φ_k .

 \rightarrow Idea of Desjardins-Zieve 1994 (arXiv) and Zieve's Ph.D. Thesis 1996.

- Consider the cycle (x_1, \ldots, x_k) in $\mathcal{O}_K/\pi^n \mathcal{O}_K$,
- Each x_i is lift to be p^f points $\{x_i + t\pi^n : 0 \le t < p^f\}$ in $\mathcal{O}_K/\pi^{n+1}\mathcal{O}_K$.

 ${\rm Linearization}:g:=\varphi^k,$

$$g(x_1 + t\pi^n) \equiv x_1 + (a_n t + b_n)\pi^n \pmod{\pi^{n+1}}$$

with

$$a_n = g'(x_1), \quad b_n = \frac{g(x_1) - x_1}{\pi^n}.$$

Linear maps Φ : $\Phi(t) = a_n t + b_n$.

III. Ideas and methods (continued) Lifts of the cycle (x_1, \ldots, x_k) :

Let $X_{n+1} = \{x_i + t\pi^n : 0 \le t < p^f\}$

- $a_n \equiv 1, b_n \not\equiv 0 \mod \pi : \varphi_{n+1}|_{X_{n+1}}$ has p^{f-1} cycles of length pk. We say σ grows.
- $a_n \equiv 1, b_n \equiv 0 \mod \pi : \varphi_{n+1}|_{X_{n+1}}$ has p^f cycles of length k. We say σ splits.
- $a_n \equiv 0 \mod \pi : \varphi_{n+1}|_{X_{n+1}}$ has a single cycle of length k and the remaining points of X are mapped into this cycle by φ^k . We say σ grows tails.
- $a_n \not\equiv 0, 1 \mod \pi : \varphi_{n+1}|_{X_{n+1}}$ has a single cycle of length k and $(p^f 1)/\ell$ cycles of length $k\ell$. We say σ partially splits.

Behavior of φ_{n+1}

IV. Subsystems and types

Let $\vec{E} = (E_1, E_2, \cdots)$ be a vector with $E_i \in \mathbb{N}^*$. A compact

$$\mathbb{X} = \bigsqcup_{i=1}^{k} (x_i + \pi^n \mathcal{O}_K)$$

is called of type (k, \vec{E}) if :

- It is a k-cycle growing at level n and all the lifts of this k-cycle split $E_1 1$ times.
- Then, all E_1 -th generations of descendants grow and then all the lifts split $E_2 1$ times.
- Further, all the lifts of these descendants at level $E_1 + E_2$ split $E_3 1$ times,
- If $\mathbb X$ is of type $(k,\vec E),$ then $(\mathbb X,f)$ is decomposed into
 - countable if the extension degree d = 1,
 - uncountable (cardinality of \mathbb{R}) many, if d > 1,

minimal subsystems, each is conjugate to the odometer $(\mathbb{Z}_{(p_s)}, \tau)$ with

$$(p_s) = (k, \underbrace{kp, \cdots, kp}_{E_1}, \underbrace{kp^2, \cdots, kp^2}_{E_2}, \underbrace{kp^3, \cdots, kp^3}_{E_3}, \cdots).$$

If $\vec{E} = (e, e, e, \dots)$, we call simply that X is of type (k, e) .

V. Minimal decomposition for $\alpha x + \beta$ on *K*

We need only to treat $\varphi(x) = x + 1$ and $\varphi(x) = \alpha x$. Let $\mathbb{U} = \{x \in K : |x|_p = 1\}.$

Theorem (Shi-Lei Fan and L, preprint)

•
$$\varphi(x) = x + 1 : K = \mathcal{O}_K \cup \bigcup_{n=1}^{\infty} \pi^n \mathbb{U}.$$

• \mathcal{O}_K is of type (1, e). • $\pi^n \mathbb{U}$ contains $p^{(n-1)f}(p^f - 1)$ balls with radius 1, each is of type (1, e).

$$\ \, { \ O } \ \, \varphi(x)=\alpha x \ \, \bigl(\alpha \ \, \text{is not a root of unity}\bigr): K=\{0\}\cup \bigcup_{n\in \mathbb{Z}}\pi^n\mathbb{U}.$$

0 is fixed and all subsystems on πⁿU are conjugate to (U, φ).
 For (U, φ) : (1) Case p ≥ 3 : Denote by ℓ the smallest integer ≥ 1 such that α^ℓ ≡ 1 (mod π). The subsystem U is decomposed into

$$(p^f-1) \cdot p^{v_\pi(\alpha^\ell-1)f-f}/\ell$$

balls of same radius and each is of type (ℓ, \vec{E}) where $\vec{E} = (v_{\pi}(\frac{\alpha^{\ell p}-1}{\alpha^{\ell}-1}), v_{\pi}(\frac{\alpha^{\ell p^2}-1}{\alpha^{\ell p}-1}), \cdots, v_{\pi}(\frac{\alpha^{\ell p^{N+1}}-1}{\alpha^{\ell p^N}-1}), e, e, \cdots),$ N is the largest integer such that $v_{\pi}((\alpha^{\ell p^{N+1}}-1)/(\alpha^{\ell p^N}-1)) \neq e.$

Theorem (Shi-Lei Fan and L, preprint)

For (\mathbb{U}, φ) : (2) Case p = 2: Denote by ℓ the smallest integer ≥ 1 such that $\alpha^{\ell} \equiv 1 \pmod{\pi}$. The subsystem \mathbb{U} is decomposed into

$$(p^f-1) \cdot p^{v_\pi(\alpha^\ell-1)f-f}/\ell$$

compact sets and each compact set is of type (ℓ, \vec{E}) with

$$\vec{E} = \left(v_{\pi}(\alpha^{\ell} + 1), \ v_{\pi}(\alpha^{\ell p} + 1), \ \cdots, \ v_{\pi}(\alpha^{\ell p^{N}} + 1), \ e, \ e, \ \cdots \right),$$

where N the biggest integer such that $v_{\pi}(\alpha^{\ell p^N} + 1) \neq e$.