Minimal decomposition of linear fractional transformations on the projective line over \mathbb{Q}_{p}

Lingmin LIAO (Université Paris-Est Créteil)

(joint with Ai-Hua Fan, Shi-Lei Fan and Yue-Fei Wang)
p-Adic Methods for Modeling of Complex Systems

ZiF, Bielefeld
April 19th 2013

Outline

(1) Introduction
(2) Affine polynomial dynamical systems in \mathbb{Q}_{p}
(3) P-adic linear frctional transformations
(4) Ideas and methods

Introduction

I. The p-adic numbers

- $p \geq 2$ a prime number.

$$
\forall n \in \mathbb{N}, n=\sum_{i=0}^{N} a_{i} p^{i}\left(a_{i}=0,1, \cdots, p-1\right)
$$

- Ring \mathbb{Z}_{p} of p-adic integers :

$$
\mathbb{Z}_{p} \ni x=\sum_{i=0}^{\infty} a_{i} p^{i}
$$

- Field \mathbb{Q}_{p} of p-adic numbers: fraction field of \mathbb{Z}_{p} :

$$
\mathbb{Q}_{p} \ni x=\sum_{i=v(x)}^{\infty} a_{i} p^{i}, \quad(\exists v(x) \in \mathbb{Z})
$$

Absolute value : $|x|_{p}=p^{-v(x)}$, metric : $d(x, y)=|x-y|_{p}$.

II. Arithmetic in \mathbb{Q}_{p}

Addition and multiplication : similar to the decimal way. "Carrying" from left to right.
Example : $x=(p-1)+(p-1) \times p+(p-1) \times p^{2}+\cdots$, then

- $x+1=0$. So,

$$
-1=(p-1)+(p-1) \times p+(p-1) \times p^{2}+\cdots .
$$

- $2 x=(p-2)+(p-1) \times p+(p-1) \times p^{2}+\cdots$.

We also have substraction and division.
Then we can define polynomials and rational maps.

III. Equicontinuous dynamics

A dynamical system is a couple (X, T) where $T: X \rightarrow X$ is a transformation on the space X.
Example : $\left(\mathbb{Z}_{p}, f\right)$ with $f \in \mathbb{Z}_{p}[x]$ being a polynomial.
We say $T: X \rightarrow X$ is equicontinuous if

$$
\forall \epsilon>0, \exists \delta>0 \text { s. t. } d\left(T^{n} x, T^{n} y\right)<\epsilon(\forall n \geq 1, \forall d(x, y)<\delta)
$$

Theorem

Let X be a compact metric space and $T: X \rightarrow X$ be an equicontinuous transformation. Then the following statements are equivalent :
(1) T is minimal (every orbit is dense).
(2) T is uniquely ergodic (there is a unique invariant measure).
(3) T is ergodic for any/some invariant measure with X as its support.

- Fact: 1-Lipschitz transformation is equicontinuous.
- Fact: Polynomial $f \in \mathbb{Z}_{p}[x]: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is equicontinuous.

IV. Study on p-adic dynamical dystems

- Oselies-Zieschang 1975: automorphisms of \mathbb{Z}_{p} Herman-Yoccoz 1983 : complex p-adic dynamical systems Volovich 1987 : p-adic string theory
- Lubin 1994 ; Zelenov 2013 : p-adic analytic transformations.
- Thiran-Verstegen-Weyers 1989 ; Woodcock-Smart 1998 ; Fan-Liao-Wang-Zhou 2007 ; Benedetto-Briend-Perdry 2007 ; Kingsbery-Levin-Preygel-Silva 2009 : Chaotic p-adic (polynomial) dynamical systems.
- Anashin 1994: 1-Lipschitz transformation (Mahler series) Yurova 2010, 2012 ; Anashin-Khrennikov-Yurova 2011, 2012 ; Lin-Shi-Yang 2012 ; Jeong 2012 ; Khrennikov-Yurova 2013 : 1-Lipschitz transformation (Van der Put series)
- Coelho-Parry 2001 : ax and distribution of Fibonacci numbers Gundlach-Khrennikov-Lindahl 2001: x^{n}
Diarra-Sylla 2013 : Chebyshev polynomials
- (see Vivaldi's database)

Affine polynomial

 dynamical systems on \mathbb{Q}_{p}
I. Polynomial dynamical systems on \mathbb{Z}_{p}

- Let $f \in \mathbb{Z}_{p}[x]$ be a polynomial with coefficients in \mathbb{Z}_{p}.
- Polynomial dynamical systems : $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$, noted as $\left(\mathbb{Z}_{p}, f\right)$.

Theorem (Ai-Hua Fan, L 2011) minimal decomposition

Let $f \in \mathbb{Z}_{p}[x]$ with $\operatorname{deg} f \geq 2$. The space \mathbb{Z}_{p} can be decomposed into three parts:

$$
\mathbb{Z}_{p}=A \sqcup B \sqcup C,
$$

where

- A is the finite set consisting of all periodic orbits;
- $B:=\sqcup_{i \in I} B_{i}$ (I finite or countable)
$\rightarrow B_{i}$: finite union of balls,
$\rightarrow f: B_{i} \rightarrow B_{i}$ is minimal;
- C is attracted into $A \sqcup B$.

II. Conjugate classes

Given a positive integer sequence $\left(p_{s}\right)_{s \geq 0}$ such that $p_{s} \mid p_{s+1}$.
Profinite groupe : $\mathbb{Z}_{\left(p_{s}\right)}:=\lim _{\leftarrow} \mathbb{Z} / p_{s} \mathbb{Z}$.
Odometer: The transformation $\tau: x \mapsto x+1$ on $\mathbb{Z}_{\left(p_{s}\right)}$.

Theorem (J.-L. Chabert, A.-H. Fan, Y. Fares 2009)

Let E be a compact set in \mathbb{Z}_{p} and $f: E \rightarrow E$ a 1-lipschitzian transformation. If the dynamical system (E, f) is minimal, then

- (E, f) is conjuguate to the odometer $\left(\mathbb{Z}_{\left(p_{s}\right)}, \tau\right)$ where $\left(p_{s}\right)$ is determined by the structure of E.

Theorem (Fan-L 2011 : Minimal components of polynomials)

Let $f \in \mathbb{Z}_{p}[X]$ be a polynomial and $O \subset \mathbb{Z}_{p}$ a clopen set, $f(O) \subset O$. Suppose $f: O \rightarrow O$ is minimal.

- If $p \geq 3$, then $\left(O,\left.f\right|_{O}\right)$ is conjugate to the odometer $\left(\mathbb{Z}_{\left(p_{s}\right)}, \tau\right)$ where

$$
\left(p_{s}\right)_{s \geq 0}=\left(k, k d, k d p, k d p^{2}, \ldots\right) \quad(1 \leq k \leq p, d \mid(p-1)) .
$$

- If $p=2$, then $\left(O,\left.f\right|_{O}\right)$ is conjugate to $\left(\mathbb{Z}_{2}, x+1\right)$.

III. Affine polynomials on \mathbb{Z}_{p}

Let $T_{a, b} x=a x+b \quad\left(a, b \in \mathbb{Z}_{p}\right)$. Denote

$$
\mathbb{U}=\left\{z \in \mathbb{Z}_{p}:|z|=1\right\}, \quad \mathbb{V}=\left\{z \in \mathbb{U}: \exists m \geq 1 \text {, s.t. } z^{m}=1\right\}
$$

Easy cases :

(1) $a \in \mathbb{Z}_{p} \backslash \mathbb{U} \Rightarrow$ one attracting fixed point $b /(1-a)$.
(2) $a=1, b=0 \Rightarrow$ every point is fixed.
(3) $a \in \mathbb{V} \backslash\{1\} \Rightarrow$ every point is on a ℓ-periodic orbit, with ℓ the smallest integer $\geqslant 1$ such that $a^{\ell}=1$.

Theorem (AH. Fan, MT. Li, JY. Yao, D. Zhou 2007) Case $p \geq 3$

(a) $a \in(\mathbb{U} \backslash \mathbb{V}) \cup\{1\}, v_{p}(b)<v_{p}(1-a) \Rightarrow p^{v_{p}(b)}$ minimal parts.
(5) $a \in \mathbb{U} \backslash \mathbb{V}, v_{p}(b) \geq v_{p}(1-a) \Rightarrow\left(\mathbb{Z}_{p}, T_{a, b}\right)$ is conjugate to $\left(\mathbb{Z}_{p}, a x\right)$. Decomposition : $\mathbb{Z}_{p}=\{0\} \sqcup \sqcup_{n \geq 1} p^{n} \mathbb{U}$.
(1) One fixed point $\{0\}$.
(2) All $\left(p^{n} \mathbb{U}, a x\right)(n \geq 0)$ are conjugate to $(\mathbb{U}, a x)$.

For $\left(\mathbb{U}, T_{a, 0}\right): p^{v_{p}\left(a^{\ell}-1\right)}(p-1) / \ell$ minimal parts, with ℓ the smallest integer $\geqslant 1$ such that $a^{\ell} \equiv 1(\bmod p)$.

Two typical decompositions of \mathbb{Z}_{p}

Theorem (Fan-Li-Yao-Zhou 2007) Case $p=2$

(a) $a \in(\mathbb{U} \backslash \mathbb{V}) \cup\{1\}, v_{p}(b)<v_{p}(1-a)$.

- $v_{p}(b)=0 \Rightarrow p^{v_{p}(a+1)-1}$ minimal parts.
- $v_{p}(b)>0 \Rightarrow p^{v_{p}(b)}$ minimal parts.
(5) $a \in \mathbb{U} \backslash \mathbb{V}, v_{p}(b) \geq v_{p}(1-a)$
$\Rightarrow\left(\mathbb{Z}_{p}, T_{a, b}\right)$ is conjugate to $\left(\mathbb{Z}_{p}, a x\right)$.
Decomposition : $\mathbb{Z}_{p}=\{0\} \sqcup \sqcup_{n \geq 1} p^{n} \mathbb{U}$.
(1) One fixed point $\{0\}$.
(2) All $\left(p^{n} \mathbb{U}, a x\right)(n \geq 0)$ are conjugate to $(\mathbb{U}, a x)$.

For $\left(\mathbb{U}, T_{a, 0}\right): 2^{v_{2}\left(a^{2}-1\right)-2}$ minimal parts.
Remark: For the case $p=2$, all minimal parts (except for the periodic orbits) are conjugate to $\left(\mathbb{Z}_{2}, x+1\right)$.
IV. Affine polynomials on \mathbb{Q}_{p}

Let φ be an affine map defined by

$$
\varphi(x)=a x+b\left(a, b \in \mathbb{Q}_{p}, a \neq 0,(a, b) \neq(1,0)\right) .
$$

If $|a| \neq 1$: easy ! For $|a|=1$, we have the following conjugacy :

- $a \neq 1$:

$$
\begin{aligned}
\mathbb{Q}_{p} & \xrightarrow{a x+b} \mathbb{Q}_{p} \\
x-\left.\frac{b}{1-a}\right|_{\downarrow} & \\
\mathbb{Q}_{p} & \xrightarrow{a x} \\
& \\
& \mathbb{Q}_{p}
\end{aligned}
$$

- $a=1$:

$$
\begin{array}{ccc}
\mathbb{Q}_{p} & \xrightarrow{x+b} & \mathbb{Q}_{p} \\
\left.\frac{x}{b} \right\rvert\, & & \left\lvert\, \begin{array}{l}
\frac{x}{b} \\
\mathbb{Q}_{p} \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}\right. \\
& \\
\mathbb{Q}_{p}
\end{array}
$$

V. Affine polynomials on \mathbb{Q}_{p}-continued

Theorem (AH. Fan, Y. Fares 2011)

If $K=\mathbb{Q}_{p}$, then
(1) $\varphi(x)=x+1: \mathbb{Q}_{p}=\mathbb{Z}_{p} \cup \bigcup_{n=1}^{\infty} p^{n} \mathbb{U}$.

- \mathbb{Z}_{p} is minimal.
- $p^{n} \mathbb{U}$ contains $p^{n-1}(p-1)$ minimal balls with radius 1 .
(2) $\varphi(x)=a x$ (a is not a root of unity) : $\mathbb{Q}_{p}=\{0\} \cup \bigcup_{n \in \mathbb{Z}} p^{n} \mathbb{U}$.
- 0 is fixed.
- All subsystems on $p^{n} \mathbb{U}$ are conjugate to (\mathbb{U}, φ).

For (\mathbb{U}, φ) :
(1) Case $p \geq 3: p^{v_{p}\left(a^{\ell}-1\right)}(p-1) / \ell$ minimal balls of same radius, with ℓ the smallest integer $\geqslant 1$ such that $a^{\ell} \equiv 1(\bmod p)$.
(2) Case $p=2: 2^{v_{2}\left(a^{2}-1\right)-2}$ minimal balls of same radius.

Two typical decompositions of \mathbb{Q}_{p}

P-adic linear frctional

transformations

I. Projective line over \mathbb{Q}_{p}

For $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{Q}_{p}^{2} \backslash\{(0,0)\}$, we say that $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if $\exists \lambda \in \mathbb{Q}_{p}^{*}$ s.t.

$$
x_{1}=\lambda x_{2} \text { and } y_{1}=\lambda y_{2}
$$

Projective line over \mathbb{Q}_{p} :

$$
\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right):=\left(\mathbb{Q}_{p}^{2} \backslash\{(0,0)\}\right) / \sim
$$

Spherical metric : Let $P=\left[x_{1}, y_{1}\right], Q=\left[x_{2}, y_{2}\right] \in \mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$, define

$$
\rho(P, Q)=\frac{\left|x_{1} y_{2}-x_{2} y_{1}\right|_{p}}{\max \left\{\left|x_{1}\right|_{p},\left|y_{1}\right|_{p}\right\} \max \left\{\left|x_{2}\right|_{p},\left|y_{2}\right|_{p}\right\}}
$$

Viewing $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ as $K \cup\{\infty\}$, for $z_{1}, z_{2} \in \mathbb{Q}_{p} \cup\{\infty\}$ we define

$$
\rho\left(z_{1}, z_{2}\right)=\frac{\left|z_{1}-z_{2}\right|_{p}}{\max \left\{\left|z_{1}\right|_{p}, 1\right\} \max \left\{\left|z_{2}\right|_{p}, 1\right\}} \quad \text { if } z_{1}, z_{2} \in \mathbb{Q}_{p}
$$

and

$$
\rho(z, \infty)= \begin{cases}1, & \text { if }|z|_{p} \leq 1 \\ 1 /|z|_{p}, & \text { if }|z|_{p}>1\end{cases}
$$

II. Linear fractional transformations

Let

$$
\phi(x)=\frac{a x+b}{c x+d} \quad \text { with } a, b, c, d \in \mathbb{Q}_{p}, a d-b c \neq 0
$$

which induces an 1-to-1 map $\phi: \mathbb{P}^{1}\left(\mathbb{Q}_{p}\right) \mapsto \mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$.

- $\phi(-d / c)=\infty$, and $\phi(\infty)=a / c$.
- ϕ is a composition of $\phi_{1}(x)=\alpha x, \phi_{2}(x)=x+\beta, \phi_{3}(x)=x \mapsto 1 / x$.
- if $\mathbb{D}(a, r)$ is a disk in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$, then $\phi(\mathbb{D}(a, r))$ is also a disk. (a disk in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ is a disk in \mathbb{Q}_{p} or a complement of a disk in \mathbb{Q}_{p}.)
(1) $\phi_{1}(\mathbb{D}(a, r))=\mathbb{D}\left(\alpha a, r|\alpha|_{p}\right)$.
(2) $\phi_{2}(\mathbb{D}(a, r))=\mathbb{D}(a+\beta, r)$.
(0) if $0 \in \mathbb{D}(a, r), \phi_{3}(\mathbb{D}(a, r))=\mathbb{P}^{1}(K) \backslash \overline{\mathbb{D}}(0,1 / r)$.
(0) if $0 \notin \mathbb{D}(a, r), \phi_{3}(\mathbb{D}(a, r))=\mathbb{D}\left(a^{-1}, r|a|_{p}^{-2}\right)$.

III. Some studies on linear fractional transformations

- Diao-Silva 2011 : There is no minimal rational maps on \mathbb{Q}_{p}. (Comments : They did not include the infinity point. We need study the rational maps on $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$.)
- Dragovich-Khrennikov-Mihajlovic 2007 : Linear fractional transformations on adelic space.

IV. Fixed points and dynamics

The dynamics of ϕ depends on its fixed points which are the solution of

$$
\frac{a x+b}{c x+d}=x \Leftrightarrow c x^{2}+(d-a) x-b=0
$$

Discriminant : $\Delta=(d-a)^{2}+4 b c$.

- If $\Delta=0$, then ϕ has only one fixed point x_{0} in \mathbb{Q}_{p} and $\phi(x)$ is conjugate to a translation $\psi(x)=x+\alpha$ for some $\alpha \in \mathbb{Q}_{p}$ by $g(x)=\frac{1}{x-x_{0}}$.
- If $\Delta \neq 0$ and $\sqrt{\Delta} \in \mathbb{Q}_{p}$, then ϕ has two fixed points $x_{1}, x_{2} \in \mathbb{Q}_{p}$ and ϕ is conjugate to a multiplication $x \mapsto \beta x$ for some $\beta \in \mathbb{Q}_{p}$ by $g(x)=\frac{x-x_{2}}{x-x_{1}}$.
- If $\Delta \neq 0$ and $\sqrt{\Delta} \notin \mathbb{Q}_{p}$, then ϕ has no fixed point in \mathbb{Q}_{p}. But ϕ has two fixed points $x_{1}, x_{2} \in \mathbb{Q}_{p}(\sqrt{\Delta})$. So we will study the dynamics of ϕ on $\mathbb{P}^{1}\left(\mathbb{Q}_{p}(\sqrt{\Delta})\right)$ then its restriction on $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$.

V. Notations

- K is a finite extension of \mathbb{Q}_{p}.
- Still denote by $|\cdot|_{p}$ the extended absolute value of K.
- Degree : $d=\left[K: \mathbb{Q}_{p}\right]$. Ramification index : e
- Valuation function : $v_{p}(x):=-\log _{p}\left(|x|_{p}\right) . \operatorname{Im}\left(v_{p}\right)=\frac{1}{e} \mathbb{Z}$.
- $\mathcal{O}_{K}:=\left\{x \in K:|x|_{p} \leq 1\right\}$: the local ring of K, $\mathcal{P}_{K}:=\left\{x \in K:|x|_{p}<1\right\}$: its maximal ideal.
- Residual field : $\mathbb{K}=\mathcal{O}_{K} / \mathcal{P}_{K}$. Then $\mathbb{K}=\mathbb{F}_{p^{f}}$, with $f=d / e$.

Quadratic extensions :

- 7 quadratic extensions of \mathbb{Q}_{2} :

$$
\mathbb{Q}_{2}(\sqrt{-1}), \mathbb{Q}_{2}(\sqrt{ \pm 2}), \mathbb{Q}_{2}(\sqrt{ \pm 3}), \mathbb{Q}_{2}(\sqrt{ \pm 6})
$$

- 3 quadratic extensions of $\mathbb{Q}_{p}(p \geq 3)$:

$$
\mathbb{Q}_{p}(\sqrt{p}), \mathbb{Q}_{p}\left(\sqrt{N_{p}}\right), \mathbb{Q}_{p}\left(\sqrt{p N_{p}}\right),
$$

where N_{p} is the smallest quadratic non-residue module p.

VI. Uniformizer and representation

An element $\pi \in K$ is a uniformizer if $v_{p}(\pi)=1 / e$.
Define $v_{\pi}(x):=e \cdot v_{p}(x)$ for $x \in K$. Then $\operatorname{Im}\left(v_{\pi}\right)=\mathbb{Z}$, and $v_{\pi}(\pi)=1$.
Let $C=\left\{c_{0}, c_{1}, \ldots, c_{p^{f}-1}\right\}$ be a fixed complete set of representatives of the cosets of \mathcal{P}_{K} in \mathcal{O}_{K}. Then every $x \in K$ has a unique π-adic expansion of the form

$$
x=\sum_{i=i_{0}}^{\infty} a_{i} \pi^{i}
$$

where $i_{0} \in \mathbb{Z}$ and $a_{i} \in C$ for all $i \geq i_{0}$.
Example : For $\mathbb{Q}_{p}(\sqrt{p})(p \geq 3)$, take $\pi=\sqrt{p}$, and

$$
x=a_{0}+a_{1} \sqrt{p}+a_{2} p+a_{3} p^{3 / 2}+a_{4} p^{2}+\cdots .
$$

VII. Minimal decomposition (ϕ admits no fixed point)

Theorem (AH. Fan, SL. Fan, L, YF. Wang (preprint))

Suppose that ϕ has no fixed points in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ and $\phi^{n} \neq i d$ for each integer $n>0$. Then
(1) the system $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), \phi\right)$ is decomposed as a finite number of minimal subsystems;
(2) these minimal subsystems are topologically conjugate to each other;
(0) the number of minimal subsystems is determined by the number

$$
\lambda:=\frac{(a+d)+\sqrt{\Delta}}{(a+d)-\sqrt{\Delta}} .
$$

Denote

- $K=\mathbb{Q}_{p}(\sqrt{\Delta})$ be the quadratic extension of \mathbb{Q}_{p} generated by $\sqrt{\Delta}$.
- π be an uniformizer of K
- \mathbb{K} be the residue field of K.
- ℓ be the order in the group \mathbb{K}^{*} of λ.

VIII. The case $p \geq 3$

Theorem (Fan-Fan-L-Wang, $K=\mathbb{Q}_{p}\left(\sqrt{N_{p}}\right)$ is unramified)

The dynamics $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), \phi\right)$ is decomposed as $\left((p+1) p^{v_{p}\left(\lambda^{\ell}-1\right)-1}\right) / \ell$ minimal subsystems. Each subsystem is topologically conjugate to the adding machine on an odometer $\mathbb{Z}_{\left(p_{s}\right)}$ with $\left(p_{s}\right)=\left(\ell, \ell p, \ell p^{2}, \cdots\right)$.

Theorem (Fan-Fan-L-Wang, $K=\mathbb{Q}_{p}(\sqrt{p}), \mathbb{Q}_{p}\left(\sqrt{p N_{p}}\right)$ is ramified)

(1) If $|a+d|_{p}>|\sqrt{\Delta}|_{p}$, then $\lambda=1(\bmod \pi)$. The dynamics $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), \phi\right)$ is decomposed as $2 p^{\left(v_{\pi}\left(\lambda^{p}-1\right)-3\right) / 2}$ minimal subsystems. Moreover, each minimal subsystem is conjugate to the adding machine on the odometer $\mathbb{Z}_{\left(p_{s}\right)}$ with $\left(p_{s}\right)=\left(1, p, p^{2}, \cdots\right)$.
(2) If $|a+d|_{p}<|\sqrt{\Delta}|_{p}$, then $\lambda=-1(\bmod \pi)$. The dynamics $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), \phi\right)$ is decomposed as $p^{\left(v_{\pi}\left(\lambda^{p}+1\right)-3\right) / 2}$ minimal subsystems.
Moreover, each minimal subsystem is conjugate to the adding machine on the odometer $\mathbb{Z}_{\left(p_{s}\right)}$ with $\left(p_{s}\right)=\left(2,2 p, 2 p^{2}, \cdots\right)$.

IX. The case $p=2$

Theorem (FFLW, $K=\mathbb{Q}_{2}(\sqrt{-3})$ is unramified)

The dynamical system $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{2}\right), \phi\right)$ is decomposed as $3 \cdot 2^{v_{2}\left(\lambda^{2 \ell}-1\right)-2} / \ell$ minimal subsystems. Moreover, each minimal system is conjugate to the adding machine on the odometer $\mathbb{Z}_{\left(p_{s}\right)}$ with $\left(p_{s}\right)=\left(\ell, \ell 2, \ell 2^{2}, \cdots\right)$.

Theorem (FFLW, $K=\mathbb{Q}_{2}(\sqrt{2}), \mathbb{Q}_{2}(\sqrt{-2}), \mathbb{Q}_{2}(\sqrt{-6}), \mathbb{Q}_{2}(\sqrt{6})$ ramified)

(1) If $|a+d|_{2}>|\sqrt{\Delta}|_{2}$, then $v_{\pi}(\lambda-1) \geq 3$ is odd and the dynamical system $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{2}\right), \phi\right)$ is decomposed as $2^{\left(v_{\pi}(\lambda-1)-1\right) / 2}$ minimal subsystems.
(2) If $|a+d|_{2}<|\sqrt{\Delta}|_{2}$, then $v_{\pi}(\lambda+1) \geq 3$ is odd and the dynamical system $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{2}\right), \phi\right)$ is decomposed as $2^{\left(v_{\pi}(\lambda+1)-1\right) / 2}$ minimal subsystems. Moreover, each minimal system is conjugate to the adding machine on the odometer $\mathbb{Z}_{\left(p_{s}\right)}$ with $\left(p_{s}\right)=\left(1,2,2^{2}, \cdots\right)$.

\mathbf{X}. The case $p=2$ (continued)

Theorem (FFLW, $K=\mathbb{Q}_{2}(\sqrt{-1}), \mathbb{Q}_{2}(\sqrt{3})$ is ramified)

(1) If $|a+d|_{2}=|\sqrt{\Delta}|_{2}, v_{\pi}\left(\lambda^{2}+1\right) \geq 2$ is even and the system $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{2}\right), \phi\right)$ is decomposed as $2^{\left(v_{\pi}\left(\lambda^{2}+1\right)-2\right) / 2}$ minimal subsystems.
(2) If $|a+d|_{2}>|\sqrt{\Delta}|_{2}$, then $v_{\pi}(\lambda-1) \geq 4$ is even and the system ($\mathbb{P}^{1}\left(\mathbb{Q}_{2}\right), \phi$) is decomposed as $2^{v_{\pi}(\lambda-1) / 2}$ minimal subsystems.
(3) If $|a+d|_{2}<|\sqrt{\Delta}|_{2}, v_{\pi}(\lambda+1) \geq 4$ is even and the system $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{2}\right), \phi\right)$ is decomposed as $2^{v_{\pi}(\lambda+1) / 2}$ minimal subsystems.
Moreover, each minimal system is conjugate to the adding machine on the odometer $\mathbb{Z}_{\left(p_{s}\right)}$ with $\left(p_{s}\right)=\left(1,2,2^{2}, \cdots\right)$.

XI. Minimal (ergodic) conditions

Corollary (FFLW, case $p \geq 3$)

The system $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right), \phi\right)$ is minimal if and only if one of the following conditions satisfied
(1) $K=\mathbb{Q}_{p}(\sqrt{\Delta})$ is unramified, $\ell=p+1$ and $v_{p}\left(\lambda^{\ell}-1\right)=1$,
(2) $K=\mathbb{Q}_{p}(\sqrt{\Delta})$ is ramified and $v_{\pi}\left(\lambda^{p}+1\right)=3$.

Corollary (FFLW, case $p=2$)

The system $\left(\mathbb{P}^{1}\left(\mathbb{Q}_{2}\right), \phi\right)$ is minimal if and only if one of the following conditions satisfied
(1) $K=\mathbb{Q}_{2}(\sqrt{\Delta})=\mathbb{Q}_{2}(\sqrt{-3}), \ell=3$ and $v_{2}\left(\lambda^{2 \ell}-1\right)=2$,
(2) $K=\mathbb{Q}_{2}(\sqrt{\Delta})=\mathbb{Q}_{2}(\sqrt{-1}), \mathbb{Q}_{2}(\sqrt{3}),|a+b|_{2}=|\sqrt{\Delta}|_{2}$ and $v_{\pi}\left(\lambda^{2}+1\right)=2$.

Ideas and methods

I. Conjugacy and restriction

Let x_{1}, x_{2} be the two fixed points in $K \backslash \mathbb{Q}_{p}$. Let $g(x)=\frac{x-x_{2}}{x-x_{1}}$.
Denote $\hat{K}=\mathbb{P}^{1}(K)$. Remark that $\hat{\mathbb{Q}}_{p}=\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ is invariant under ϕ.

$$
\begin{aligned}
& \left(\hat{\mathbb{Q}}_{p} \subset\right) \hat{K} \xrightarrow{\phi}\left(\hat{\mathbb{Q}}_{p} \subset\right) \hat{K} \\
& \begin{array}{ccc}
g \mid & & g \\
\forall & \\
\hat{K} & \\
\hat{K}^{\prime}
\end{array}
\end{aligned}
$$

Step I : Do minimal decomposition of $(K, \lambda x)$.
Step II: Find $g\left(\widehat{\mathbb{Q}}_{p}\right)$ and determine the restriction $\left(g\left(\widehat{\mathbb{Q}}_{p}\right), \lambda x\right)$. Step III: Go back to $\hat{\mathbb{Q}}_{p}$.

II. Methods for minimal decomposition of $\mathbb{Z}_{p}, \mathbb{Q}_{p}, K$.

Fan, Li, Yao, Zhou : Fourier analysis.
Our methodes :

Theorem (Anashin 1994, Chabert, Fan and Fares 2009)

Let $X \subset \mathcal{O}_{K}$ be a compact set.
$\varphi: X \rightarrow X$ is minimal \Leftrightarrow
$\varphi_{k}: X / \pi^{k} \mathcal{O}_{K} \rightarrow X / \pi^{k} \mathcal{O}_{K}$ is minimal for all $k \geq 1$.
Predicting the behavior of φ_{k+1} by the structure of φ_{k}.
\rightarrow Idea of Desjardins-Zieve 1994 (arXiv) and Zieve's Ph.D. Thesis 1996.

- Consider the cycle $\left(x_{1}, \ldots, x_{k}\right)$ in $\mathcal{O}_{K} / \pi^{n} \mathcal{O}_{K}$,
- Each x_{i} is lift to be p^{f} points $\left\{x_{i}+t \pi^{n}: 0 \leq t<p^{f}\right\}$ in $\mathcal{O}_{K} / \pi^{n+1} \mathcal{O}_{K}$.
Linearization : $g:=\varphi^{k}$,

$$
g\left(x_{1}+t \pi^{n}\right) \equiv x_{1}+\left(a_{n} t+b_{n}\right) \pi^{n}\left(\bmod \pi^{n+1}\right)
$$

with

$$
a_{n}=g^{\prime}\left(x_{1}\right), \quad b_{n}=\frac{g\left(x_{1}\right)-x_{1}}{\pi^{n}} .
$$

Linear maps $\Phi: \Phi(t)=a_{n} t+b_{n}$.

III. Ideas and methods (continued)

Lifts of the cycle $\left(x_{1}, \ldots, x_{k}\right)$:
Let $X_{n+1}=\left\{x_{i}+t \pi^{n}: 0 \leq t<p^{f}\right\}$

- $a_{n} \equiv 1, b_{n} \not \equiv 0 \bmod \pi:\left.\varphi_{n+1}\right|_{X_{n+1}}$ has p^{f-1} cycles of length $p k$. We say σ grows.
- $a_{n} \equiv 1, b_{n} \equiv 0 \bmod \pi:\left.\varphi_{n+1}\right|_{X_{n+1}}$ has p^{f} cycles of length k. We say σ splits.
- $a_{n} \equiv 0 \bmod \pi:\left.\varphi_{n+1}\right|_{X_{n+1}}$ has a single cycle of length k and the remaining points of X are mapped into this cycle by φ^{k}.
We say σ grows tails.
- $a_{n} \not \equiv 0,1 \bmod \pi:\left.\varphi_{n+1}\right|_{X_{n+1}}$ has a single cycle of length k and $\left(p^{f}-1\right) / \ell$ cycles of length $k \ell$.
We say σ partially splits.

Behavior of φ_{n+1}

Case 2

Case 3

Case 4

IV. Subsystems and types

Let $\vec{E}=\left(E_{1}, E_{2}, \cdots\right)$ be a vector with $E_{i} \in \mathbb{N}^{*}$. A compact

$$
\mathbb{X}=\bigsqcup_{i=1}^{k}\left(x_{i}+\pi^{n} \mathcal{O}_{K}\right)
$$

is called of type (k, \vec{E}) if :

- It is a k-cycle growing at level n and all the lifts of this k-cycle split $E_{1}-1$ times.
- Then, all E_{1}-th generations of descendants grow and then all the lifts split $E_{2}-1$ times.
- Further, all the lifts of these descendants at level $E_{1}+E_{2}$ split $E_{3}-1$ times,
If \mathbb{X} is of type (k, \vec{E}), then (\mathbb{X}, f) is decomposed into
- countable if the extension degree $d=1$,
- uncountable (cardinality of \mathbb{R}) many, if $d>1$, minimal subsystems, each is conjugate to the odometer $\left(\mathbb{Z}_{\left(p_{s}\right)}, \tau\right)$ with

$$
\left(p_{s}\right)=(k, \underbrace{k p, \cdots, k p}_{E_{1}}, \underbrace{k p^{2}, \cdots, k p^{2}}_{E_{2}}, \underbrace{k p^{3}, \cdots, k p^{3}}_{E_{3}}, \cdots) .
$$

If $\vec{E}=(e, e, e, \ldots)$, we call simply that X is of type (k, e).

V. Minimal decomposition for $\alpha x+\beta$ on K

We need only to treat $\varphi(x)=x+1$ and $\varphi(x)=\alpha x$.
Let $\mathbb{U}=\left\{x \in K:|x|_{p}=1\right\}$.

Theorem (Shi-Lei Fan and L, preprint)

(1) $\varphi(x)=x+1: K=\mathcal{O}_{K} \cup \bigcup_{n=1}^{\infty} \pi^{n} \mathbb{U}$.

- \mathcal{O}_{K} is of type $(1, e)$.
- $\pi^{n} \mathbb{U}$ contains $p^{(n-1) f}\left(p^{f}-1\right)$ balls with radius 1 , each is of type $(1, e)$.
(2) $\varphi(x)=\alpha x$ (α is not a root of unity): $K=\{0\} \cup \bigcup_{n \in \mathbb{Z}} \pi^{n} \mathbb{U}$.
- 0 is fixed and all subsystems on $\pi^{n} \mathbb{U}$ are conjugate to (\mathbb{U}, φ). For (\mathbb{U}, φ) : (1) Case $p \geq 3$: Denote by ℓ the smallest integer $\geqslant 1$ such that $\alpha^{\ell} \equiv 1(\bmod \pi)$. The subsystem \mathbb{U} is decomposed into

$$
\left(p^{f}-1\right) \cdot p^{v_{\pi}\left(\alpha^{\ell}-1\right) f-f} / \ell
$$

balls of same radius and each is of type (ℓ, \vec{E}) where $\vec{E}=\left(v_{\pi}\left(\frac{\alpha^{\ell p}-1}{\alpha^{\ell}-1}\right), v_{\pi}\left(\frac{\alpha^{\ell p^{2}}-1}{\alpha^{\ell p}-1}\right), \cdots, v_{\pi}\left(\frac{\alpha^{\ell} p^{N+1}-1}{\alpha^{\ell p^{N}}-1}\right), e, e, \cdots\right)$, N is the largest integer such that $v_{\pi}\left(\left(\alpha^{\ell p^{N+1}}-1\right) /\left(\alpha^{\ell p^{N}}-1\right)\right) \neq e$.

Theorem (Shi-Lei Fan and L, preprint)

For (\mathbb{U}, φ) :
(2) Case $p=2$:

Denote by ℓ the smallest integer $\geqslant 1$ such that $\alpha^{\ell} \equiv 1(\bmod \pi)$.
The subsystem \mathbb{U} is decomposed into

$$
\left(p^{f}-1\right) \cdot p^{v_{\pi}\left(\alpha^{\ell}-1\right) f-f} / \ell
$$

compact sets and each compact set is of type (ℓ, \vec{E}) with

$$
\vec{E}=\left(v_{\pi}\left(\alpha^{\ell}+1\right), v_{\pi}\left(\alpha^{\ell p}+1\right), \cdots, v_{\pi}\left(\alpha^{\ell p^{N}}+1\right), e, e, \cdots\right),
$$

where N the biggest integer such that $v_{\pi}\left(\alpha^{\ell p^{N}}+1\right) \neq e$.

