# Induced representations of infinite-dimensional groups

#### Alexandre Kosyak

Institute of Mathematics, NAS of the Ukraine, MPIM Bonn, Germany

April 15-19, 2013

・ 同 ト ・ ヨ ト ・ ヨ ト

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

#### Induced representations

Let G be a locally compact group, H closed subgroup of G, and  $S: H \rightarrow U(V)$  be a unitary representation of a subgroup H in a Hilbert space V.

- 4 同 6 4 日 6 4 日 6

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

#### Induced representations

Let G be a locally compact group, H closed subgroup of G, and  $S: H \rightarrow U(V)$  be a unitary representation of a subgroup H in a Hilbert space V.

To define the induced representation  $\operatorname{Ind}_{H}^{G}S$  set  $X = H \setminus G$ ,

$$L^{2}(X, V, \mu) = \{f : X \to V \mid ||f||^{2} := \int_{X} ||f(x)||_{V}^{2} d\mu(x) < \infty\},$$

where  $\mu = \mu_s$  is a *G*-quasi-invariant measure on *X* satisfying the condition  $d\mu_s(xg)/d\mu_s(x) = \Delta_H(h(x,g))/\Delta_G(h(x,g))$ . Here  $\Delta_G$  is a modular function on a group *G*.

- 4 同 6 4 日 6 4 日 6

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Induced representations

Let G be a locally compact group, H closed subgroup of G, and  $S: H \rightarrow U(V)$  be a unitary representation of a subgroup H in a Hilbert space V.

To define the induced representation  $\operatorname{Ind}_{H}^{G}S$  set  $X = H \setminus G$ ,

$$L^{2}(X, V, \mu) = \{f : X \to V \mid ||f||^{2} := \int_{X} ||f(x)||_{V}^{2} d\mu(x) < \infty\},$$

where  $\mu = \mu_s$  is a *G*-quasi-invariant measure on *X* satisfying the condition  $d\mu_s(xg)/d\mu_s(x) = \Delta_H(h(x,g))/\Delta_G(h(x,g))$ . Here  $\Delta_G$  is a modular function on a group *G*.

The induced representation is defined by the following formula

$$(T(g)f)(x) = S(h(x,g)) (d\mu(xg)/d\mu(x))^{1/2} f(xg), \qquad (1)$$

where  $h(x,g) \in H$  is defined by formula s(x)g = h(x,g)s(xg).

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

#### Induced representations

Suppose that  $X = H \setminus G$  is a right G-space and that  $s : X \to G$  is a Borel section of the projection  $p : G \to X = H \setminus G : g \mapsto Hg$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

#### Induced representations

Suppose that  $X = H \setminus G$  is a right *G*-space and that  $s : X \to G$  is a Borel section of the projection  $p : G \to X = H \setminus G : g \mapsto Hg$ . Then every element  $g \in G$  can be uniquely written in the form  $g = hs(x), h \in H, x \in X$ . Thus as a set  $G \cong H \times X$ . The element h = h(x, g) is defined by formula s(x)g = h(x, g)s(xg).

(4月) (4日) (4日)

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Induced representations

Suppose that  $X = H \setminus G$  is a right G-space and that  $s : X \to G$  is a Borel section of the projection  $p : G \to X = H \setminus G : g \mapsto Hg$ . Then every element  $g \in G$  can be uniquely written in the form  $g = hs(x), h \in H, x \in X$ . Thus as a set  $G \cong H \times X$ . The element h = h(x,g) is defined by formula s(x)g = h(x,g)s(xg).

#### Remark

The right (or the left) regular representation  $\rho, \lambda : G \mapsto U(L^2(G, h))$  of a locally compact group G is a particular case of the induced representation  $\operatorname{Ind}_H^G S$  with  $H = \{e\}$ and S = Id, where h is a Haar measure. The quasiregular representation is a particular case of the induced representation with some closed subgroup  $H \subset G$  and S = Id.

< ロ > < 同 > < 回 > < 回 >

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

# Orbit method for $B(n, \mathbb{R})$

Let G be connected and simply connected nilpotent Lie group. For example, take the group  $G_n = B(n, \mathbb{R})$  of all upper triangular real matrices of order n with ones on the main diagonal.

(人間) システレ イテレ

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

# Orbit method for $B(n, \mathbb{R})$

Let G be connected and simply connected nilpotent Lie group. For example, take the group  $G_n = B(n, \mathbb{R})$  of all upper triangular real matrices of order n with ones on the main diagonal. The Kirillov orbits method is the description of a one-to-one correspondence between two sets  $\hat{G}$  and  $\mathcal{O}(G)$  defined below:

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

# Orbit method for $B(n, \mathbb{R})$

Let *G* be connected and simply connected nilpotent Lie group. For example, take the group  $G_n = B(n, \mathbb{R})$  of all upper triangular real matrices of order *n* with ones on the main diagonal. The Kirillov orbits method is the description of a one-to-one correspondence between two sets  $\hat{G}$  and  $\mathcal{O}(G)$  defined below: a) the set  $\hat{G} = IrrUniRep(G)/\sim$  of all equivalence classes of

irreducible unitary representations of a group G,

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

# Orbit method for $B(n, \mathbb{R})$

Let G be connected and simply connected nilpotent Lie group. For example, take the group  $G_n = B(n, \mathbb{R})$  of all upper triangular real matrices of order n with ones on the main diagonal. The Kirillov orbits method is the description of a one-to-one correspondence between two sets  $\hat{G}$  and  $\mathcal{O}(G)$  defined below: a) the set  $\hat{G} = IrrUniRep(G)/\sim$  of all equivalence classes of irreducible unitary representations of a group G, b) the set  $\mathcal{O}(G)$  of all orbits of the group G in the space  $\mathfrak{g}^*$  dual to the Lie algebra  $\mathfrak{g}$  with respect to the coadjoint representation.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

# Orbit method for $B(n, \mathbb{R})$

Let G be connected and simply connected nilpotent Lie group. For example, take the group  $G_n = B(n, \mathbb{R})$  of all upper triangular real matrices of order n with ones on the main diagonal. The Kirillov orbits method is the description of a one-to-one correspondence between two sets  $\hat{G}$  and  $\mathcal{O}(G)$  defined below: a) the set  $\hat{G} = IrrUniRep(G)/\sim$  of all equivalence classes of irreducible unitary representations of a group G, b) the set  $\mathcal{O}(G)$  of all orbits of the group G in the space  $\mathfrak{g}^*$  dual to the Lie algebra  $\mathfrak{g}$  with respect to the coadjoint representation. A subalgebra  $\mathfrak{h} \subset \mathfrak{g}$  is subordinate to a functional  $f \in \mathfrak{g}^*$  if

$$\langle f, [x, y] 
angle = 0$$
 for all  $x, y \in \mathfrak{h}$ ,

i.e. if  $\mathfrak{h}$  is an *isotropic subspace* with respect to the bilinear form defined by  $B_f(x,y) = \langle f, [x,y] \rangle$  on  $\mathfrak{g}$ , where  $\langle f, x \rangle = \operatorname{tr}(xf)$ ,  $x \in \mathfrak{g}, f \in \mathfrak{g}^*$ .

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

# Orbit method for $B(n, \mathbb{R})$

One-dimensional representation of the Lie algebra  $\mathfrak{h}$  is defined by  $\mathfrak{h} \ni x \mapsto \langle f, x \rangle \in \mathbb{R}$ . We define a one-dimensional unitary representation  $U_{f,H} : H \to S^1$  of the group  $H = \exp \mathfrak{h}$  by formula

$$U_{f,H}(\exp x) = \exp 2\pi i \langle f, x \rangle.$$
 (2)

(人間) システレ イテレ

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

# Orbit method for $B(n, \mathbb{R})$

One-dimensional representation of the Lie algebra  $\mathfrak{h}$  is defined by  $\mathfrak{h} \ni x \mapsto \langle f, x \rangle \in \mathbb{R}$ . We define a one-dimensional unitary representation  $U_{f,H} : H \to S^1$  of the group  $H = \exp \mathfrak{h}$  by formula

$$U_{f,H}(\exp x) = \exp 2\pi i \langle f, x \rangle.$$
 (2)

#### Theorem (Theorem 7.2, [2])

(a) Every irreducible unitary representation T of G has the form  $T = \text{Ind}_{H}^{G}U_{f,H}$ , where  $H \subset G$  is a connected subgroup and  $f \in \mathfrak{g}^{*}$ ;

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

# Orbit method for $B(n, \mathbb{R})$

One-dimensional representation of the Lie algebra  $\mathfrak{h}$  is defined by  $\mathfrak{h} \ni x \mapsto \langle f, x \rangle \in \mathbb{R}$ . We define a one-dimensional unitary representation  $U_{f,H} : H \to S^1$  of the group  $H = \exp \mathfrak{h}$  by formula

$$U_{f,H}(\exp x) = \exp 2\pi i \langle f, x \rangle.$$
 (2)

#### Theorem (Theorem 7.2, [2])

(a) Every irreducible unitary representation T of G has the form  $T = \operatorname{Ind}_{H}^{G}U_{f,H}$ , where  $H \subset G$  is a connected subgroup and  $f \in \mathfrak{g}^{*}$ ; (b) the representation  $T_{f,H} = \operatorname{Ind}_{H}^{G}U_{f,H}$  is irreducible if and only if the Lie algebra  $\mathfrak{h}$  of the group H is a subalgebra of  $\mathfrak{g}$  subordinate to the functional f with maximal possible dimension;

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

# Orbit method for $B(n, \mathbb{R})$

One-dimensional representation of the Lie algebra  $\mathfrak{h}$  is defined by  $\mathfrak{h} \ni x \mapsto \langle f, x \rangle \in \mathbb{R}$ . We define a one-dimensional unitary representation  $U_{f,H} : H \to S^1$  of the group  $H = \exp \mathfrak{h}$  by formula

$$U_{f,H}(\exp x) = \exp 2\pi i \langle f, x \rangle.$$
 (2)

#### Theorem (Theorem 7.2, [2])

(a) Every irreducible unitary representation T of G has the form  $T = \operatorname{Ind}_{H}^{G} U_{f,H}$ , where  $H \subset G$  is a connected subgroup and  $f \in \mathfrak{g}^{*}$ ; (b) the representation  $T_{f,H} = \operatorname{Ind}_{H}^{G} U_{f,H}$  is irreducible if and only if the Lie algebra  $\mathfrak{h}$  of the group H is a subalgebra of  $\mathfrak{g}$  subordinate to the functional f with maximal possible dimension; (c) two irreducible representations are equivalent  $T_{f_{1},H_{1}} \sim T_{f_{2},H_{2}}$  if and only if the functionals  $f_{1}$  and  $f_{2}$  belong to the same orbit of  $\mathfrak{g}^{*}$ .

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Generic orbits

#### $G = B(n, \mathbb{R}), \ \mathfrak{g}, \ \mathfrak{g}^*, \ \mathrm{Ad}, \ \mathrm{Ad}^*$

(日) (同) (三) (三)

э

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Generic orbits

$$G = B(n, \mathbb{R}), \ \mathfrak{g}, \ \mathfrak{g}^*, \ \mathrm{Ad}, \ \mathrm{Ad}^*$$

Let us fix a Lie group  $G = B(n, \mathbb{R})$ , let  $\mathfrak{g}$  be the its Lie algebra, and  $\mathfrak{g}^*$  the dual space. The pairing between  $\mathfrak{g}$  and  $\mathfrak{g}^*$  is defined by the trace:

$$\mathfrak{g}^* imes \mathfrak{g} \ni (y, x) \mapsto \langle y, x \rangle := tr(xy) \in \mathbb{R}.$$

(日) (同) (三) (三)

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Generic orbits

$$G = B(n, \mathbb{R}), \ \mathfrak{g}, \ \mathfrak{g}^*, \ \mathrm{Ad}, \ \mathrm{Ad}^*$$

Let us fix a Lie group  $G = B(n, \mathbb{R})$ , let  $\mathfrak{g}$  be the its Lie algebra, and  $\mathfrak{g}^*$  the dual space. The pairing between  $\mathfrak{g}$  and  $\mathfrak{g}^*$  is defined by the trace:

$$\mathfrak{g}^* imes \mathfrak{g} \ni (y, x) \mapsto \langle y, x \rangle := tr(xy) \in \mathbb{R}.$$

The *adjoint action* of the group G on  $\mathfrak{g}$  has the following form  $\operatorname{Ad}_t(x) = txt^{-1}, t \in G, x \in \mathfrak{g}.$ 

イロト イポト イラト イラト

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Generic orbits

$$G=B(n,\mathbb{R}),\ \mathfrak{g},\ \mathfrak{g}^*,\ \mathrm{Ad},\ \mathrm{Ad}^*$$

Let us fix a Lie group  $G = B(n, \mathbb{R})$ , let  $\mathfrak{g}$  be the its Lie algebra, and  $\mathfrak{g}^*$  the dual space. The pairing between  $\mathfrak{g}$  and  $\mathfrak{g}^*$  is defined by the trace:

$$\mathfrak{g}^* \times \mathfrak{g} \ni (y, x) \mapsto \langle y, x \rangle := tr(xy) \in \mathbb{R}.$$

The *adjoint action* of the group G on  $\mathfrak{g}$  has the following form  $\operatorname{Ad}_t(x) = txt^{-1}, t \in G, x \in \mathfrak{g}$ . The *coadjoint action* of the group G on  $\mathfrak{g}^*$  is defined by

$$\langle \operatorname{Ad}_t^*(y), x \rangle = \langle y, \operatorname{Ad}_t(x) \rangle, \ y \in \mathfrak{g}^*, x \in \mathfrak{g}$$

and is expressed as  $\operatorname{Ad}_t^*(y) = (t^{-1}yt)_-$ , where  $(A)_-$  means that we take lower triangular part of A.

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Generic orbits

The form of the action  $\operatorname{Ad}_t^*(y) = (t^{-1}yt)_-$  implies, that  $\operatorname{Ad}_t^*$ ,  $t \in G$  acts as follows: to a given column of  $y \in \mathfrak{g}^*$ , a linear combination of the previous columns is added and to a given row of y, a linear combination of the following rows is added.

イロト イポト イラト イラト

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Generic orbits

The form of the action  $\operatorname{Ad}_t^*(y) = (t^{-1}yt)_{-}$  implies, that  $\operatorname{Ad}_t^*$ ,  $t \in G$  acts as follows: to a given column of  $y \in \mathfrak{g}^*$ , a linear combination of the previous columns is added and to a given row of y, a linear combination of the following rows is added. The minors  $\Delta_k$ ,  $k = 1, 2, ..., [\frac{n}{2}]$ , consisting of the last k rows and first k columns of y are invariant of the action.

イロト イポト イラト イラト

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Generic orbits

The form of the action  $\operatorname{Ad}_t^*(y) = (t^{-1}yt)_-$  implies, that  $\operatorname{Ad}_t^*$ ,  $t \in G$  acts as follows: to a given column of  $y \in \mathfrak{g}^*$ , a linear combination of the previous columns is added and to a given row of y, a linear combination of the following rows is added. The minors  $\Delta_k$ ,  $k = 1, 2, ..., [\frac{n}{2}]$ , consisting of the last k rows and first k columns of y are invariant of the action. It is possible to show that If  $c_k \neq 0$  then the manifold given by the equation

$$\mathcal{O}_{c_1,c_2,...,c_{[n/2]}} = \left\{ y \in \mathfrak{g}^* \mid \Delta_k = c_k, \ 1 \leq k \leq [n/2] \right\}$$

is a *G*-orbit in  $\mathfrak{g}^*$ .

(4月) (4日) (4日)

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

#### Generic orbits

Hence, generic orbits  $\mathcal{O}_{c_1,c_2,...,c_{\lfloor n/2 \rfloor}}$  have codimension equal to  $\left[\frac{n}{2}\right]$  and dimension equal to  $\frac{n(n-1)}{2} - \left[\frac{n}{2}\right]$ .

(日)

-

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Generic orbits

Hence, generic orbits  $\mathcal{O}_{c_1,c_2,...,c_{[n/2]}}$  have codimension equal to  $\left[\frac{n}{2}\right]$  and dimension equal to  $\frac{n(n-1)}{2} - \left[\frac{n}{2}\right]$ . To obtain a representation for such an orbit, we can take a matrix y of the form

$$y^{n+1} = \begin{pmatrix} 0 & 0 \\ \Lambda & 0 \end{pmatrix} = \sum_{\substack{r+s=n+1, \ 1 \le s \le [n/2]}} y_{rs} E_{rs}, \quad y^5 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & y_{32} & 0 & 0 \\ y_{41} & 0 & 0 & 0 \end{pmatrix},$$

where  $\Lambda$  is the matrix of order  $\left[\frac{n}{2}\right]$  such that all nonzero elements are contained in the *anti-diagonal*.

- 4 同 6 4 日 6 4 日 6

Induced representations Orbit method for the group  $B(n, \mathbb{R})$ Generic orbits

## Generic orbits

Hence, generic orbits  $\mathcal{O}_{c_1,c_2,...,c_{\lfloor n/2 \rfloor}}$  have codimension equal to  $\lfloor \frac{n}{2} \rfloor$ and dimension equal to  $\frac{n(n-1)}{2} - \lfloor \frac{n}{2} \rfloor$ . To obtain a representation for such an orbit, we can take a matrix y of the form

$$y^{n+1} = \begin{pmatrix} 0 & 0 \\ \Lambda & 0 \end{pmatrix} = \sum_{\substack{r+s=n+1, \ 1 \le s \le [n/2]}} y_{rs} E_{rs}, \quad y^5 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & y_{32} & 0 & 0 \\ y_{41} & 0 & 0 & 0 \end{pmatrix},$$

where  $\Lambda$  is the matrix of order  $\begin{bmatrix} n\\2 \end{bmatrix}$  such that all nonzero elements are contained in the *anti-diagonal*. A subalgebra subordinate to the functional y consists of all matrices of the form  $\begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}$ , where A is an  $\begin{bmatrix} n\\2 \end{bmatrix} \times \begin{bmatrix} n+1\\2 \end{bmatrix}$  or  $\begin{bmatrix} n+1\\2 \end{bmatrix} \times \begin{bmatrix} n\\2 \end{bmatrix}$  matrix.

・ロト ・同ト ・ヨト ・ヨト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

# Regular and quasiregular representations, $\dim G = \infty$

(a) "Regular representation". Find a suitable topological group  $\tilde{G}$ : 1)  $G \subset \tilde{G}$  and G is a dense subgroup in  $\tilde{G}$ , 2) construct a measure  $\mu$  on  $\tilde{G} : \mu^{R_t} \sim \mu \ \forall t \in G$ .

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

# Regular and quasiregular representations, $\dim G = \infty$

(a) "Regular representation". Find a suitable topological group  $\tilde{G}$ : 1)  $G \subset \tilde{G}$  and G is a dense subgroup in  $\tilde{G}$ , 2) construct a measure  $\mu$  on  $\tilde{G} : \mu^{R_t} \sim \mu \ \forall t \in G$ . Representation  $T^{R,\mu} : G \mapsto U(L^2(\tilde{G},\mu))$  is defined by  $(T_t^{R,\mu}f)(x) = (d\mu(xt)/d\mu(x))^{1/2} f(xt), \quad x \in \tilde{G}, \ t \in G$ .

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

# Regular and quasiregular representations, $\dim G = \infty$

(a) "Regular representation". Find a suitable topological group G̃:
1) G ⊂ G̃ and G is a dense subgroup in G̃,
2) construct a measure μ on G̃ : μ<sup>Rt</sup> ~ μ ∀t ∈ G.
Representation T<sup>R,μ</sup> : G → U(L<sup>2</sup>(G̃, μ)) is defined by
(T<sup>R,μ</sup><sub>t</sub>f)(x) = (dμ(xt)/dμ(x))<sup>1/2</sup> f(xt), x ∈ G̃, t ∈ G.
(c) "Quasiregular representations", H ⊂ G, replace X = H\G by X̃ = H\G̃ and construct a G -quasi-invariant measure on X̃.

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

# Regular and quasiregular representations, $\dim G = \infty$

(a) "Regular representation". Find a suitable topological group  $\tilde{G}$ : 1)  $G \subset \tilde{G}$  and G is a dense subgroup in  $\tilde{G}$ , 2) construct a measure  $\mu$  on  $\tilde{G} : \mu^{R_t} \sim \mu \ \forall t \in G$ . Representation  $T^{R,\mu} : G \mapsto U(L^2(\tilde{G},\mu))$  is defined by  $(T_t^{R,\mu}f)(x) = (d\mu(xt)/d\mu(x))^{1/2} f(xt), \quad x \in \tilde{G}, \ t \in G$ . (c) "Quasiregular representations",  $H \subset G$ , replace  $X = H \setminus G$  by  $\tilde{X} = \tilde{H} \setminus \tilde{G}$  and construct a G-quasi-invariant measure on  $\tilde{X}$ .

#### Conjecture (R.S. Ismagilov, 1985, [4])

The right regular representation  $T^{R,\mu}$ :  $G \rightarrow U(L^2(\tilde{G},\mu))$  is irreducible if and only if

イロン イボン イヨン イヨン

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

# Regular and quasiregular representations, $\dim G = \infty$

(a) "Regular representation". Find a suitable topological group  $\tilde{G}$ : 1)  $G \subset \tilde{G}$  and G is a dense subgroup in  $\tilde{G}$ , 2) construct a measure  $\mu$  on  $\tilde{G} : \mu^{R_t} \sim \mu \ \forall t \in G$ . Representation  $T^{R,\mu} : G \mapsto U(L^2(\tilde{G},\mu))$  is defined by  $(T_t^{R,\mu}f)(x) = (d\mu(xt)/d\mu(x))^{1/2} f(xt), \quad x \in \tilde{G}, \ t \in G$ . (c) "Quasiregular representations",  $H \subset G$ , replace  $X = H \setminus G$  by  $\tilde{X} = \tilde{H} \setminus \tilde{G}$  and construct a G-quasi-invariant measure on  $\tilde{X}$ .

#### Conjecture (R.S. Ismagilov, 1985, [4])

The right regular representation  $T^{R,\mu} : G \to U(L^2(\tilde{G},\mu))$  is irreducible if and only if 1)  $\mu^{L_t} \perp \mu \ \forall t \in G \setminus \{e\}, \ (\perp \text{ means singular}),$ 2) the measure  $\mu$  is G-ergodic.

イロン イボン イヨン イヨン

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(\mathfrak{q})$  and  $\operatorname{B}_2(\mathfrak{a})$ The space of orbits for  $B_0^-$  and  $B_2(\mathfrak{a})$ Induced representations for generic orbits

Let G be an infinite-dimensional group,  $H \subset G$  subgroup,  $S: H \to U(V)$  unitary representation of H in a Hilbert space V,  $\dim(H \setminus G) = \infty$ . How to construct  $\operatorname{Ind}_{H}^{G}(s) - ?$ 

(日) (同) (三) (三)

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Let G be an infinite-dimensional group,  $H \subset G$  subgroup,  $S: H \to U(V)$  unitary representation of H in a Hilbert space V,  $\dim(H \setminus G) = \infty$ . How to construct  $\operatorname{Ind}_{H}^{G}(s) - ?$ 1) Find some completion  $\tilde{H}$  of H such that  $\tilde{S}: \tilde{H} \to U(V)$  is an extension of S,

- 4 同 6 4 日 6 4 日 6

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Let G be an infinite-dimensional group,  $H \subset G$  subgroup,  $S: H \to U(V)$  unitary representation of H in a Hilbert space V,  $\dim(H \setminus G) = \infty$ . How to construct  $\operatorname{Ind}_{H}^{G}(s) - ?$ 1) Find some completion  $\tilde{H}$  of H such that  $\tilde{S}: \tilde{H} \to U(V)$  is an extension of S, 2) take any G-right-quasi-invariant measure  $\mu$  on an appropriate

completion  $\tilde{X} = \tilde{H} \setminus \tilde{G}$  of  $X = H \setminus G$ , on which the group G acts from the right,

- 4 回 ト 4 ヨト 4 ヨト

Let G be an infinite-dimensional group,  $H \subset G$  subgroup,  $S: H \to U(V)$  unitary representation of H in a Hilbert space V,  $\dim(H \setminus G) = \infty$ . How to construct  $\operatorname{Ind}_{H}^{G}(s) - ?$ 1) Find some completion  $\tilde{H}$  of H such that  $\tilde{S}: \tilde{H} \to U(V)$  is an extension of S,

2) take any *G*-right-quasi-invariant measure  $\mu$  on an appropriate completion  $\tilde{X} = \tilde{H} \setminus \tilde{G}$  of  $X = H \setminus G$ , on which the group *G* acts from the right,

3) in  $L^2(\tilde{X}, V, \mu) = \{f : \tilde{X} \to V : \int_{\tilde{X}} ||f(x)||_V^2 d\mu(x) < \infty, \}$  define the induced representation of the group G by the following formula:

$$(T_t f)(x) = \tilde{S}(\tilde{h}(x,t)) (d\mu(xt)/d\mu(x))^{1/2} f(xt), x \in \tilde{X}, t \in G, (3)$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Let G be an infinite-dimensional group,  $H \subset G$  subgroup,  $S: H \to U(V)$  unitary representation of H in a Hilbert space V,  $\dim(H \setminus G) = \infty$ . How to construct  $\operatorname{Ind}_{H}^{G}(s) - ?$ 1) Find some completion  $\tilde{H}$  of H such that  $\tilde{S}: \tilde{H} \to U(V)$  is an extension of S,

2) take any *G*-right-quasi-invariant measure  $\mu$  on an appropriate completion  $\tilde{X} = \tilde{H} \setminus \tilde{G}$  of  $X = H \setminus G$ , on which the group *G* acts from the right,

3) in  $L^2(\tilde{X}, V, \mu) = \{f : \tilde{X} \to V : \int_{\tilde{X}} ||f(x)||_V^2 d\mu(x) < \infty, \}$  define the induced representation of the group G by the following formula:

$$(T_t f)(x) = \tilde{S}(\tilde{h}(x,t)) (d\mu(xt)/d\mu(x))^{1/2} f(xt), x \in \tilde{X}, t \in G,$$
 (3)

where  $\tilde{h}$  is defined by  $\tilde{s}(x)t = \tilde{h}(x,t)\tilde{s}(xt)$  for an appropriate section  $\tilde{s}: \tilde{X} \to \tilde{G}$  of the extended projection  $\tilde{p}: \tilde{G} \to \tilde{X}$ .

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $GL_2(a)$  and  $B_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

# Consider the group $\operatorname{GL}_0(2\infty, \mathbb{R}) = \varinjlim_n \operatorname{GL}(2n-1, \mathbb{R})$ , w.r.t. symmetric embedding

(日) (同) (三) (三)

э

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $GL_2(a)$  and  $B_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Consider the group  $\operatorname{GL}_0(2\infty, \mathbb{R}) = \varinjlim_n \operatorname{GL}(2n-1, \mathbb{R})$ , w.r.t. symmetric embedding and the generalization of the algebra of *Hilbert-Schmidt operators*.  $\sigma_2(a)$  is an algebra  $\Leftrightarrow a \in \mathfrak{A}_{GL}$ ,

- 同 ト - ヨ ト - - ヨ ト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $GL_2(a)$  and  $B_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Consider the group  $\operatorname{GL}_0(2\infty, \mathbb{R}) = \varinjlim_n \operatorname{GL}(2n-1, \mathbb{R})$ , w.r.t. symmetric embedding and the generalization of the algebra of *Hilbert-Schmidt operators*.  $\sigma_2(a)$  is an algebra  $\Leftrightarrow a \in \mathfrak{A}_{\mathrm{GL}}$ ,  $\sigma_2(a) = \{x = \sum_{k,n \in \mathbb{Z}} x_{kn} E_{kn} \mid ||x||^2_{\sigma_2(a)} = \sum_{k,n \in \mathbb{Z}} |x_{kn}|^2 a_{kn} < \infty\},$  $\mathfrak{A}_{\mathrm{GL}} = \{a = (a_{kn})_{(k,n) \in \mathbb{Z}^2} \mid 0 < a_{kn} \leq Ca_{km}a_{mn}, k, n, m \in \mathbb{Z}, C > 0\}.$ 

・ 同 ト ・ ヨ ト ・ ヨ

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $GL_2(a)$  and  $B_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Consider the group  $\operatorname{GL}_0(2\infty, \mathbb{R}) = \varinjlim_n \operatorname{GL}(2n-1, \mathbb{R})$ , w.r.t. symmetric embedding and the generalization of the algebra of *Hilbert-Schmidt operators*.  $\sigma_2(a)$  is an algebra  $\Leftrightarrow a \in \mathfrak{A}_{\operatorname{GL}}$ ,  $\sigma_2(a) = \{x = \sum_{k,n \in \mathbb{Z}} x_{kn} E_{kn} \mid ||x||_{\sigma_2(a)}^2 = \sum_{k,n \in \mathbb{Z}} |x_{kn}|^2 a_{kn} < \infty\},$  $\mathfrak{A}_{\operatorname{GL}} = \{a = (a_{kn})_{(k,n) \in \mathbb{Z}^2} \mid 0 < a_{kn} \leq Ca_{km}a_{mn}, k, n, m \in \mathbb{Z}, C > 0\}.$ **Define** *Hilbert-Lie* algebra  $\mathfrak{gl}_2(a)$  and *Hilbert-Lie* group  $\operatorname{GL}_2(a)$  as:  $\mathfrak{gl}_2(a) = \{x = \sum_{k,n \in \mathbb{Z}} x_{kn} E_{kn} \mid ||x||_{\mathfrak{gl}_2(a)}^2 = \sum_{k,n \in \mathbb{Z}} |x_{kn}|^2 a_{kn} < \infty\},$  $\operatorname{GL}_2(a) = \{I + x \mid (I + x)^{-1} = 1 + y \quad x, y \in \mathfrak{gl}_2(a)\}, a \in \mathfrak{A}_{\operatorname{GL}}.$ 

・ 同 ト ・ ヨ ト ・ ヨ

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $GL_2(a)$  and  $B_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Consider the group  $\operatorname{GL}_0(2\infty, \mathbb{R}) = \varinjlim_n \operatorname{GL}(2n-1, \mathbb{R})$ , w.r.t. symmetric embedding and the generalization of the algebra of *Hilbert-Schmidt operators*.  $\sigma_2(a)$  is an algebra  $\Leftrightarrow a \in \mathfrak{A}_{\operatorname{GL}}$ ,  $\sigma_2(a) = \{x = \sum_{k,n \in \mathbb{Z}} x_{kn} E_{kn} \mid ||x||_{\sigma_2(a)}^2 = \sum_{k,n \in \mathbb{Z}} |x_{kn}|^2 a_{kn} < \infty\},$  $\mathfrak{A}_{\operatorname{GL}} = \{a = (a_{kn})_{(k,n) \in \mathbb{Z}^2} \mid 0 < a_{kn} \leq Ca_{km}a_{mn}, k, n, m \in \mathbb{Z}, C > 0\}.$ **Define** *Hilbert-Lie* algebra  $\mathfrak{gl}_2(a)$  and *Hilbert-Lie* group  $\operatorname{GL}_2(a)$  as:  $\mathfrak{gl}_2(a) = \{x = \sum_{k,n \in \mathbb{Z}} x_{kn} E_{kn} \mid ||x||_{\mathfrak{gl}_2(a)}^2 = \sum_{k,n \in \mathbb{Z}} |x_{kn}|^2 a_{kn} < \infty\},$  $\operatorname{GL}_2(a) = \{I + x \mid (I + x)^{-1} = 1 + y \quad x, y \in \mathfrak{gl}_2(a)\}, a \in \mathfrak{A}_{\operatorname{GL}}.$ 

#### Theorem ([3])

Every continuous unitary representation U of the group  $\operatorname{GL}_0(2\infty,\mathbb{R})$  in a Hilbert space H can be extended by continuity to a unitary representation  $U_2(a) : \operatorname{GL}_2(a) \to U(H)$  of some Hilbert-Lie group  $\operatorname{GL}_2(a)$ ,  $a \in \mathfrak{A}_{\operatorname{GL}}$  depending on the representation.

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $GL_2(a)$  and  $B_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Consider a Hilbert-Lie group  $B_2(a) := \{I + x \mid x \in \mathfrak{b}_2(a)\}$ , the corresponding Hilbert-Lie algebra  $\mathfrak{b}_2(a)$  is defined as

$$\mathfrak{b}_{2}(a) = \{ x = \sum_{(k,n) \in \mathbb{Z}^{2}, k < n} x_{kn} E_{kn} \mid ||x||_{\mathfrak{b}_{2}(a)}^{2} = \sum_{(k,n) \in \mathbb{Z}^{2}, k < n} |x_{kn}|^{2} a_{kn} < \infty \},$$

 $\mathfrak{A} = \big\{ \mathsf{a} = (\mathsf{a}_{kn})_{(k,n) \in \mathbb{Z}^2, k < n}, \ \mathsf{a}_{kn} \leq \mathsf{C} \mathsf{a}_{km} \mathsf{a}_{mn}, \ k < m < n, \ k, m, n \in \mathbb{Z} \big\}.$ 

- 同 ト - ヨ ト - - ヨ ト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $GL_2(a)$  and  $B_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Consider a Hilbert-Lie group  $B_2(a) := \{I + x \mid x \in \mathfrak{b}_2(a)\}$ , the corresponding Hilbert-Lie algebra  $\mathfrak{b}_2(a)$  is defined as

$$\mathfrak{b}_{2}(a) = \{ x = \sum_{(k,n) \in \mathbb{Z}^{2}, k < n} x_{kn} E_{kn} \mid ||x||_{\mathfrak{b}_{2}(a)}^{2} = \sum_{(k,n) \in \mathbb{Z}^{2}, k < n} |x_{kn}|^{2} a_{kn} < \infty \},$$

 $\mathfrak{A} = \big\{ \mathsf{a} = (\mathsf{a}_{kn})_{(k,n) \in \mathbb{Z}^2, k < n}, \ \mathsf{a}_{kn} \leq \mathsf{C} \mathsf{a}_{km} \mathsf{a}_{mn}, \ k < m < n, \ k, m, n \in \mathbb{Z} \big\}.$ 

#### Lemma ([3])

The Hilbert space  $\mathfrak{b}_2(a)$  (with an operation  $(x, y) \rightarrow xy$ ) is a Hilbert algebra if and only if the weight  $a \in \mathfrak{A}$ .

(日) (同) (三) (三)

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(\mathfrak{q})$  and  $\operatorname{B}_2(\mathfrak{a})$ The space of orbits for  $B_0^-$  and  $B_2(\mathfrak{a})$ Induced representations for generic orbits

Consider a Hilbert-Lie group  $B_2(a) := \{I + x \mid x \in \mathfrak{b}_2(a)\}$ , the corresponding Hilbert-Lie algebra  $\mathfrak{b}_2(a)$  is defined as

$$\mathfrak{b}_{2}(a) = \{ x = \sum_{(k,n) \in \mathbb{Z}^{2}, k < n} x_{kn} E_{kn} \mid ||x||_{\mathfrak{b}_{2}(a)}^{2} = \sum_{(k,n) \in \mathbb{Z}^{2}, k < n} |x_{kn}|^{2} a_{kn} < \infty \},$$

 $\mathfrak{A} = \big\{ \mathsf{a} = (\mathsf{a}_{kn})_{(k,n) \in \mathbb{Z}^2, k < n}, \ \mathsf{a}_{kn} \leq \mathsf{C} \mathsf{a}_{km} \mathsf{a}_{mn}, \ k < m < n, \ k, m, n \in \mathbb{Z} \big\}.$ 

#### Lemma ([3])

The Hilbert space  $\mathfrak{b}_2(a)$  (with an operation  $(x, y) \rightarrow xy$ ) is a Hilbert algebra if and only if the weight  $a \in \mathfrak{A}$ .

We have  $B_0^{\mathbb{Z}} = \bigcap_{a \in \mathfrak{A}} B_2(a)$ , therefore  $\widehat{B}_0^{\mathbb{Z}} = \bigcup_{a \in \mathfrak{A}} \widehat{B_2(a)}$ . Hence, for the description of *the dual space*  $\widehat{B}_0^{\mathbb{Z}}$  it is sufficient to know  $\widehat{B_2(a)}$  for all  $a \in \mathfrak{A}$ , but this problem has not been solved yet.

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ **The space of orbits** for  $\mathcal{B}_0^{\prime}$  and  $\mathcal{B}_2(a)$ Induced representations for generic orbits

# The space of orbits

Take the group  $B_0^{\mathbb{Z}}$ , fix one of its Hilbert–Lie completion  $B_2(a)$ ,  $a \in \mathfrak{A}$ , the corresponding Hilbert–Lie algebra  $\mathfrak{b}_2(a)$  and the dual space  $\mathfrak{b}_2^*(a)$  w.r.t the pairing

$$\mathfrak{g}^* imes \mathfrak{g} 
i (y, x) \mapsto \langle y, x \rangle := tr(xy).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ **The space of orbits** for  $\mathcal{B}_0^{\prime}$  and  $\mathcal{B}_2(a)$ Induced representations for generic orbits

# The space of orbits

Take the group  $B_0^{\mathbb{Z}}$ , fix one of its Hilbert–Lie completion  $B_2(a)$ ,  $a \in \mathfrak{A}$ , the corresponding Hilbert–Lie algebra  $\mathfrak{b}_2(a)$  and the dual space  $\mathfrak{b}_2^*(a)$  w.r.t the pairing

$$\mathfrak{g}^* imes \mathfrak{g} 
i (y, x) \mapsto \langle y, x \rangle := tr(xy).$$

The *adjoint action* of the group  $B_2(a)$  on its Lie algebra  $\mathfrak{b}_2(a)$  is:

$$\mathrm{Ad}_t(x) := txt^{-1}.$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ **The space of orbits for**  $B_0^{\prime\prime}$  and  $B_2(a)$ Induced representations for generic orbits

# The space of orbits

Take the group  $B_0^{\mathbb{Z}}$ , fix one of its Hilbert–Lie completion  $B_2(a)$ ,  $a \in \mathfrak{A}$ , the corresponding Hilbert–Lie algebra  $\mathfrak{b}_2(a)$  and the dual space  $\mathfrak{b}_2^*(a)$  w.r.t the pairing

$$\mathfrak{g}^* \times \mathfrak{g} \ni (y, x) \mapsto \langle y, x \rangle := tr(xy).$$

The *adjoint action* of the group  $B_2(a)$  on its Lie algebra  $\mathfrak{b}_2(a)$  is:

$$\mathrm{Ad}_t(x) := txt^{-1}.$$

The coadjoint action of the group  $B_2(a)$  on the dual  $\mathfrak{b}_2^*(a)$  is

$$\operatorname{Ad}_t^*(y) = (t^{-1}yt)_-.$$

・ロト ・同ト ・ヨト ・ヨト

We consider four different type of orbits w.r.t. the coadjoint action of the group  $B_2(a)$  in the dual space  $\mathfrak{b}_2^*(a)$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

We consider four different type of orbits w.r.t. the coadjoint action of the group  $B_2(a)$  in the dual space  $\mathfrak{b}_2^*(a)$ . *Case 1*) 0-*dimensional orbits* are of the form:  $\mathcal{O}_0 = y, y \in \mathfrak{b}_2^*(a),$  $y = \sum_{k \in \mathbb{Z}} y_{k+1,k} \mathcal{E}_{k+1,k}. B_2(a) \ni \exp(x) \mapsto \exp(2\pi i (\langle y, x \rangle)) \in S^1.$ 

- 同 ト - ヨ ト - - ヨ ト

We consider four different type of orbits w.r.t. the coadjoint action of the group  $B_2(a)$  in the dual space  $\mathfrak{b}_2^*(a)$ . *Case 1*) 0-*dimensional orbits* are of the form:  $\mathcal{O}_0 = y, y \in \mathfrak{b}_2^*(a)$ ,  $y = \sum_{k \in \mathbb{Z}} y_{k+1,k} E_{k+1,k}$ .  $B_2(a) \ni \exp(x) \mapsto \exp(2\pi i (\langle y, x \rangle)) \in S^1$ . *Case 2*) The finite-dimensional orbits corresponding to finite points  $y = \sum_{(k,n) \in \mathbb{Z}, k > n} y_{kn} E_{kn} \in \mathfrak{b}_2^*(a)$ . Kirillov:  $\hat{G} \supset \bigcup_n \hat{G}_{2n-1}$ .

- 4 周 ト 4 戸 ト 4 戸 ト

We consider four different type of orbits w.r.t. the coadjoint action of the group  $B_2(a)$  in the dual space  $\mathfrak{b}_2^*(a)$ . *Case 1*) 0-*dimensional orbits* are of the form:  $\mathcal{O}_0 = y, y \in \mathfrak{b}_2^*(a)$ ,  $y = \sum_{k \in \mathbb{Z}} y_{k+1,k} E_{k+1,k}$ .  $B_2(a) \ni \exp(x) \mapsto \exp(2\pi i (\langle y, x \rangle)) \in S^1$ . *Case 2*) The finite-dimensional orbits corresponding to finite points  $y = \sum_{(k,n) \in \mathbb{Z}, k > n} y_{kn} E_{kn} \in \mathfrak{b}_2^*(a)$ . Kirillov:  $\hat{G} \supset \bigcup_n \hat{G}_{2n-1}$ . *Case 3*) Generic orbits are generated by points  $y^k \in \mathfrak{b}_2^*(a) \ k \in \mathbb{Z}$ ,  $y^k = \sum_{r+s=k, s \leq [(k-1)/2]} y_{rs} E_{rs}$ . We construct  $T^{y^k, 2m+1, \mu_b}$ .

- 4 同 2 4 日 2 4 日 2

We consider four different type of orbits w.r.t. the coadjoint action of the group  $B_2(a)$  in the dual space  $\mathfrak{b}_2^*(a)$ . *Case 1*) 0-*dimensional orbits* are of the form:  $\mathcal{O}_0 = y, y \in \mathfrak{b}_2^*(a)$ ,  $y = \sum_{k \in \mathbb{Z}} y_{k+1,k} E_{k+1,k}$ .  $B_2(a) \ni \exp(x) \mapsto \exp(2\pi i (\langle y, x \rangle)) \in S^1$ . *Case 2*) The finite-dimensional orbits corresponding to finite points  $y = \sum_{(k,n) \in \mathbb{Z}, k > n} y_{kn} E_{kn} \in \mathfrak{b}_2^*(a)$ . Kirillov:  $\hat{G} \supset \bigcup_n \hat{G}_{2n-1}$ . *Case 3*) Generic orbits are generated by points  $y^k \in \mathfrak{b}_2^*(a) \ k \in \mathbb{Z}$ ,  $y^k = \sum_{r+s=k, s \leq [(k-1)/2]} y_{rs} E_{rs}$ . We construct  $T^{y^k, 2m+1, \mu_b}$ . *Case 4*) General orbits generated by points  $y \in \mathfrak{b}_2^*(a)$ . Rep-s.??

- 4 回 ト 4 ヨト 4 ヨト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Recall 
$$B_0^{\mathbb{Z}} \subset B_2(a) \subset B^{\mathbb{Z}}$$
 and  $\mathfrak{b}_0^{\mathbb{Z}} \subset \mathfrak{b}_2(a) \subset \mathfrak{b}^{\mathbb{Z}}$ . Fix  $y^k \in (\mathfrak{b}_0^{\mathbb{Z}})^*$ ,  
the Lie algebra  $\mathfrak{h}_0^{2m+1} = \{\sum_{r \leq m < n} x_{rn} E_{rn}\} \subset \mathfrak{b}_0^{\mathbb{Z}}$  is subordinate to  
the functional  $y^k$  for all  $k, m \in \mathbb{Z}$  since it is commutative. The  
representation of the Lie algebra

$$\mathfrak{h}_0^{2m+1} \ni x \mapsto \langle y^k, x \rangle \in \mathbb{R}^1.$$

(日) (部)(日)(日)(日)

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^+$  and  $B_2(a)$ Induced representations for generic orbits

Recall 
$$B_0^{\mathbb{Z}} \subset B_2(a) \subset B^{\mathbb{Z}}$$
 and  $\mathfrak{b}_0^{\mathbb{Z}} \subset \mathfrak{b}_2(a) \subset \mathfrak{b}^{\mathbb{Z}}$ . Fix  $y^k \in (\mathfrak{b}_0^{\mathbb{Z}})^*$ ,  
the Lie algebra  $\mathfrak{h}_0^{2m+1} = \{\sum_{r \leq m < n} x_{rn} E_{rn}\} \subset \mathfrak{b}_0^{\mathbb{Z}}$  is subordinate to  
the functional  $y^k$  for all  $k, m \in \mathbb{Z}$  since it is commutative. The  
representation of the Lie algebra

$$\mathfrak{h}_0^{2m+1} \ni x \mapsto \langle y^k, x \rangle \in \mathbb{R}^1.$$

The representation of the Lie group  $H_0^{2m+1}$ 

$$H_0^{2m+1} = B_2(m,a) \ni \exp(x) \mapsto \exp 2\pi i \langle y^k, x \rangle \in S^1.$$

We have  $G = B_0^{\mathbb{Z}}$  and  $S : H \mapsto U(\mathbb{C})$ . Construct  $\mathrm{Ind}_H^G(S)$ ?

(日) (同) (三) (三)

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Recall 
$$B_0^{\mathbb{Z}} \subset B_2(a) \subset B^{\mathbb{Z}}$$
 and  $\mathfrak{b}_0^{\mathbb{Z}} \subset \mathfrak{b}_2(a) \subset \mathfrak{b}^{\mathbb{Z}}$ . Fix  $y^k \in (\mathfrak{b}_0^{\mathbb{Z}})^*$ ,  
the Lie algebra  $\mathfrak{h}_0^{2m+1} = \{\sum_{r \leq m < n} x_{rn} E_{rn}\} \subset \mathfrak{b}_0^{\mathbb{Z}}$  is subordinate to  
the functional  $y^k$  for all  $k, m \in \mathbb{Z}$  since it is commutative. The  
representation of the Lie algebra

$$\mathfrak{h}_0^{2m+1} \ni x \mapsto \langle y^k, x \rangle \in \mathbb{R}^1.$$

The representation of the Lie group  $H_0^{2m+1}$ 

$$H_0^{2m+1} = B_2(m,a) \ni \exp(x) \mapsto \exp 2\pi i \langle y^k, x \rangle \in S^1.$$

We have  $G = B_0^{\mathbb{Z}}$  and  $S : H \mapsto U(\mathbb{C})$ . Construct  $\mathrm{Ind}_H^G(S)$ ?

- 1) Extension of the representations  $\tilde{S} : \tilde{H} \mapsto U(V)$ .
- 2) Completion of the space  $\tilde{X} = \tilde{H} \setminus \tilde{G}$ .
- 3) Construction of the G-quasiinvariant measure on  $\tilde{X}$ .

- 4 同 1 4 日 1 4 日

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

1) The representation S of the group  $H_0^{2m+1}$  can be extended to the representation of its Hilbert-Lie completion  $H_2^{2m+1}(a) \subset B_2(a)$ for some  $a \in \mathfrak{A}$ :  $H_2^{2m+1}(a) \ni \exp(x) \longmapsto \exp 2\pi i \langle y^k, x \rangle \in S^1$ . Indeed,  $\mathfrak{b}_0^{\mathbb{Z}} = \bigcap_{a \in \mathfrak{A}} \mathfrak{b}_2(a)$ , therefore  $(\mathfrak{b}_0^{\mathbb{Z}})^* = \bigcup_{a \in \mathfrak{A}} \mathfrak{b}_2^*(a)$ , hence any  $y^k \in (\mathfrak{b}_0^{\mathbb{Z}})^*$  belongs to some  $\mathfrak{b}_2^*(a)$ ,  $a \in \mathfrak{A}$ .

- 同 ト - ヨ ト - - ヨ ト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

2) Completion of the space 
$$X = H \setminus G$$
. For  $m \in \mathbb{Z}$  we have  
 $B_0^{\mathbb{Z}} = B_{m,0}B_0(m)B_0^{(m)}, B_2(a) = B_{m,2}(a)B_2(m,a)B_2^{(m)}(a),$   
 $B^{\mathbb{Z}} = B_mB(m)B^{(m)},$  hence  $X_{m,0} \subset X_{m,2}(a) \subset X_m$ , where  
 $X_{m,0} \simeq B_{m,0} \times B_0^{(m)}, X_{m,2}(a) \simeq B_{m,2}(a) \times B_2^{(m)}(a), X_m \simeq B_m \times B^{(m)}.$ 

(日) (部)(日)(日)(日)

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

2) Completion of the space 
$$X = H \setminus G$$
. For  $m \in \mathbb{Z}$  we have  
 $B_0^{\mathbb{Z}} = B_{m,0}B_0(m)B_0^{(m)}$ ,  $B_2(a) = B_{m,2}(a)B_2(m,a)B_2^{(m)}(a)$ ,  
 $B^{\mathbb{Z}} = B_mB(m)B^{(m)}$ , hence  $X_{m,0} \subset X_{m,2}(a) \subset X_m$ , where  
 $X_{m,0} \simeq B_{m,0} \times B_0^{(m)}$ ,  $X_{m,2}(a) \simeq B_{m,2}(a) \times B_2^{(m)}(a)$ ,  $X_m \simeq B_m \times B^{(m)}$ .  
3) Define the measure  $\mu_b = \mu_{b,m} \otimes \mu_b^{(m)}$  on the group  $B_m \times B^{(m)}$   
as an infinite tensor product of one-dimensional Gaussian measures

$$d\mu_b(x) = \otimes_{(k,n)\in B_m\cup B^{(m)}} \sqrt{\frac{b_{kn}}{\pi}} \exp(-b_{kn} x_{kn}^2) dx_{kn}.$$
(4)

(日) (部)(日)(日)(日)

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

2) Completion of the space 
$$X = H \setminus G$$
. For  $m \in \mathbb{Z}$  we have  
 $B_0^{\mathbb{Z}} = B_{m,0}B_0(m)B_0^{(m)}$ ,  $B_2(a) = B_{m,2}(a)B_2(m,a)B_2^{(m)}(a)$ ,  
 $B^{\mathbb{Z}} = B_m B(m)B^{(m)}$ , hence  $X_{m,0} \subset X_{m,2}(a) \subset X_m$ , where  
 $X_{m,0} \simeq B_{m,0} \times B_0^{(m)}$ ,  $X_{m,2}(a) \simeq B_{m,2}(a) \times B_2^{(m)}(a)$ ,  $X_m \simeq B_m \times B^{(m)}$ .  
3) Define the measure  $\mu_b = \mu_{b,m} \otimes \mu_b^{(m)}$  on the group  $B_m \times B^{(m)}$   
as an infinite tensor product of one-dimensional Gaussian measures

$$d\mu_b(x) = \otimes_{(k,n)\in B_m\cup B^{(m)}} \sqrt{\frac{b_{kn}}{\pi}} \exp(-b_{kn}x_{kn}^2) dx_{kn}.$$
(4)

#### Lemma (Kolmogorov's zero-one law.)

We have  $\mu_b(B_{m,2}(a) imes B_2^{(m)}(a)) = 1$  (resp. = 0) if and only if

$$\sum_{(k,n)\in B_m\cup B^{(m)}}a_{kn}/b_{kn}<\infty\quad (\textit{resp.}\quad =\infty).$$

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

# Irreducibility criteria

The representation  $T^{y^k,2m+1,\mu_b}$ ,  $k,m \in \mathbb{Z}$ , is defined by

$$(T_t f)(x) = S(h(x, t)) (d\mu(xt)/d\mu(x))^{1/2} f(xt), f \in L^2(X, \mu),$$

 $S(h(x,t)) = \exp 2\pi i \langle y, h(x,t) - I \rangle = \exp \left( 2\pi i \operatorname{tr} \left( (t-I)B(x,y) \right) \right).$ (6)

- 4 同 2 4 日 2 4 日 2

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^{-}$  and  $B_2(a)$ Induced representations for generic orbits

# Irreducibility criteria

The representation  $T^{y^k,2m+1,\mu_b}$ ,  $k,m \in \mathbb{Z}$ , is defined by

$$(T_t f)(x) = S(h(x, t)) (d\mu(xt)/d\mu(x))^{1/2} f(xt), \ f \in L^2(X, \mu),$$
  
$$S(h(x, t)) = \exp 2\pi i \langle y, h(x, t) - I \rangle = \exp \left(2\pi i \operatorname{tr} \left((t - I)B(x, y)\right)\right).$$
(6)

#### Theorem

(i) The representation  $T^{2m+1,2m+2r+1,\mu_b}$  is irreducible if and only if

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

# Irreducibility criteria

The representation  $T^{y^k,2m+1,\mu_b}$ ,  $k,m \in \mathbb{Z}$ , is defined by

$$(T_t f)(x) = S(h(x, t)) (d\mu(xt)/d\mu(x))^{1/2} f(xt), \ f \in L^2(X, \mu),$$
  
$$S(h(x, t)) = \exp 2\pi i \langle y, h(x, t) - I \rangle = \exp \left(2\pi i \operatorname{tr} \left((t - I)B(x, y)\right)\right).$$
(6)

#### Theorem

(i) The representation  $T^{2m+1,2m+2r+1,\mu_b}$  is irreducible if and only if (a) the measure  $\mu_b$  is  $B_0^{\mathbb{Z}}$  ergodic and (b) either r = 0 or r < 0and  $\mu_b^{L_t} \perp \mu_b$  for all  $t \in G_{m-|r|+1,m+|r|} \setminus \{e\}$ .

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^{-}$  and  $B_2(a)$ Induced representations for generic orbits

# Irreducibility criteria

The representation  $T^{y^k,2m+1,\mu_b}$ ,  $k,m \in \mathbb{Z}$ , is defined by

$$(T_t f)(x) = S(h(x, t)) (d\mu(xt)/d\mu(x))^{1/2} f(xt), \ f \in L^2(X, \mu),$$
  
$$S(h(x, t)) = \exp 2\pi i \langle y, h(x, t) - I \rangle = \exp \left(2\pi i \operatorname{tr} \left((t - I)B(x, y)\right)\right).$$
(6)

#### Theorem

(i) The representation  $T^{2m+1,2m+2r+1,\mu_b}$  is irreducible if and only if (a) the measure  $\mu_b$  is  $B_0^{\mathbb{Z}}$  ergodic and (b) either r = 0 or r < 0and  $\mu_b^{L_t} \perp \mu_b$  for all  $t \in G_{m-|r|+1,m+|r|} \setminus \{e\}$ . (ii) The representation  $T^{2m,2m+2r+1,\mu_b}$  is irreducible if and only if (a) the measure  $\mu_b$  is  $B_0^{\mathbb{Z}}$  ergodic and (b) either r = -1, r = 0 or r < -1 and  $\mu_b^{L_t} \perp \mu_b$  for all  $t \in G_{m-|r|+1,m+|r|-1} \setminus \{e\}$ .

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

We find h(x, t) using s(x)t = h(x, t)s(xt). Set  $B(x,y)=x_m^{-1}yx^{(m)}$ , we get

$$h(x,t) - I = \left\{ egin{array}{ccc} 0, & {
m for} & t \in B_m B^{(m)}, \ x^{(m)}(t-I) x_m^{-1}, & {
m for} & t \in B(m), \end{array} 
ight.$$

$$\langle y, h(x, t) - I \rangle = \operatorname{tr} \left( x^{(m)} t_0 x_m^{-1} y \right) = \operatorname{tr} \left( t_0 x_m^{-1} y x^{(m)} \right) = \operatorname{tr} \left( t_0 B(x, y) \right).$$

The group  $B^{\mathbb{Z}}$  is a semi-direct product  $B^{\mathbb{Z}} = B_m \ltimes B(m) \rtimes B^{(m)}$ , we have  $B_m B(m) B^{(m)} \ni x_m x(m) x^{(m)} = h x_m x^{(m)} \in B(m) B_m B^{(m)}$ ,  $h = x_m x(m) x_m^{-1}$ , where  $B^{\mathbb{Z}} \ni x = \begin{pmatrix} x^{(m)} x(m) \\ 0 & x_m \end{pmatrix} = x_m x(m) x^{(m)}$ . The space  $X = B(m) \setminus B^{\mathbb{Z}}$  is isomorphic to  $B_m B^{(m)}$ . Therefore the section s can be used as an embedding  $s \colon B_m B^{(m)} \to B(m) B_m B^{(m)}$ . For  $t = t_m t^{(m)} \in B_m B^{(m)}$  holds h(x, t) = e. For  $t \in B(m)$  we get  $s(x)t = x_m x^{(m)}t = h(x, t) x_m x^{(m)}$ , hence  $h(x, t) = x_m x^{(m)}t(x_m x^{(m)})^{-1}$  $= \begin{pmatrix} x^{(m)} & 0 \\ 0 & x_m \end{pmatrix} \begin{pmatrix} 1 & t_0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} (x^{(m)})^{-1} & 0 \\ 0 & x_m^{-1} \end{pmatrix} = \begin{pmatrix} 1 & x^{(m)}t_0 x_m^{-1} \\ 1 & x_m \end{pmatrix}$ , where  $t_0 = t - I$ .

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

# Proof of the theorem

For the particular case k = 2m + 1, r = 0 or k = 2m, r = 0 or r = -1 the statement of the theorem is exactly the same as in the finite-dimensional case. The proof of the irreducibility is based on

#### Lemma

The von Neumann algebra  $\mathfrak{A}^{S}$  generated by the restriction of the representation  $T^{y^{k},2m+2r+1,\mu_{b}}$  on the commutative subgroup  $B_{0}(m)$  of the group  $B_{0}^{\mathbb{Z}}$  coincides with  $L^{\infty}(X_{m},\mu_{b})$ .

$$G_{p,q} = \{H \sum_{p \leq k < r \leq q} x_{kr} E_{kr}\}, B(m) = H^{2m+1} = \{I + \sum_{k \leq m < r} x_{kr} E_{kr}\}.$$





Alexandre Kosvak

 $B^{\mathbb{Z}} \ni x = \begin{pmatrix} x^{(m)} & x(m) \\ 0 & x_m \end{pmatrix}.$ 

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Define the unitary representation  $T^{L,2n+1,\mu_b}$ ,  $n \in \mathbb{Z}$  of the group  $G = B_{n,0} \times B_0^{(n)}$  in the Hilbert space  $\mathcal{H} = L^2(B_n \times B^{(n)}, \mu_b)$  by

$$(T^{L,2n+1,\mu_b}_s f)(x) = \left(d\mu_b(s^{-1}x)/d\mu_b(x)\right)^{1/2} f(s^{-1}x), \ f \in \mathcal{H}, \ s \in G,$$

where  $\mu_b = \mu_{b,n} \otimes \mu_b^{(n)}$  is defined by (4).

くほし くほし くほし

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Define the unitary representation  $T^{L,2n+1,\mu_b}$ ,  $n \in \mathbb{Z}$  of the group  $G = B_{n,0} \times B_0^{(n)}$  in the Hilbert space  $\mathcal{H} = L^2(B_n \times B^{(n)}, \mu_b)$  by

$$(T_s^{L,2n+1,\mu_b}f)(x) = \left(d\mu_b(s^{-1}x)/d\mu_b(x)\right)^{1/2}f(s^{-1}x), \ f \in \mathcal{H}, \ s \in G,$$

where  $\mu_b = \mu_{b,n} \otimes \mu_b^{(n)}$  is defined by (4). The representation  $T_s^{L,2n+1,\mu_b}$  is correctly defined for any  $s \in B_0^{(n)}$  and for an arbitrary measure  $\mu_{b,n}$ .

- 同 ト - ヨ ト - - ヨ ト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Define the unitary representation  $T^{L,2n+1,\mu_b}$ ,  $n \in \mathbb{Z}$  of the group  $G = B_{n,0} \times B_0^{(n)}$  in the Hilbert space  $\mathcal{H} = L^2(B_n \times B^{(n)}, \mu_b)$  by

$$(T_s^{L,2n+1,\mu_b}f)(x) = \left(d\mu_b(s^{-1}x)/d\mu_b(x)\right)^{1/2}f(s^{-1}x), \ f \in \mathcal{H}, \ s \in G,$$

where  $\mu_b = \mu_{b,n} \otimes \mu_b^{(n)}$  is defined by (4). The representation  $T_s^{L,2n+1,\mu_b}$  is correctly defined for any  $s \in B_0^{(n)}$  and for an arbitrary measure  $\mu_{b,n}$ . For  $s \in B_{n,0}$  the representation  $T_s^{L,2n+1,\mu_b}$  is correctly defined if and only if  $\mu_{b,n}^{L_s} \sim \mu_{b,n}$  for all  $s \in B_{n,0}$ .

くほし くほし くほう

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

Define the unitary representation  $T^{L,2n+1,\mu_b}$ ,  $n \in \mathbb{Z}$  of the group  $G = B_{n,0} \times B_0^{(n)}$  in the Hilbert space  $\mathcal{H} = L^2(B_n \times B^{(n)}, \mu_b)$  by

$$(T_s^{L,2n+1,\mu_b}f)(x) = \left(d\mu_b(s^{-1}x)/d\mu_b(x)\right)^{1/2}f(s^{-1}x), \ f \in \mathcal{H}, \ s \in G,$$

where  $\mu_b = \mu_{b,n} \otimes \mu_b^{(n)}$  is defined by (4). The representation  $T_s^{L,2n+1,\mu_b}$  is correctly defined for any  $s \in B_0^{(n)}$  and for an arbitrary measure  $\mu_{b,n}$ . For  $s \in B_{n,0}$  the representation  $T_s^{L,2n+1,\mu_b}$  is correctly defined if and only if  $\mu_{b,n}^{L_s} \sim \mu_{b,n}$  for all  $s \in B_{n,0}$ . More precisely, the operator  $T_{l+tE_{rs}}^{L,2n+1,\mu_b}$  for  $l + tE_{rs} \in B_{n,0}$  is correctly defined if and only if the following condition holds

$$\mu_{b,n}^{L_l+tE_{rs}}\sim \mu_{b,n}, \ orall t\in \mathbb{R} \Leftrightarrow S_{rs}^L(b)=\sum_{n=s+1}^\infty b_{rn}/b_{sn}<\infty.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^{-}$  and  $B_2(a)$ Induced representations for generic orbits

## Resume, conclusions

What we can say about  $\hat{G}$  for  $G = B_0^{\mathbb{Z}}$ ?

We have  $B_0^{\mathbb{Z}} = \cap_{a \in \mathfrak{A}} B_2(a)$ , therefore  $\widehat{B_0^{\mathbb{Z}}} = \cup_{a \in \mathfrak{A}} \widehat{B_2(a)}$ .

3

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

## Resume, conclusions

What we can say about  $\hat{G}$  for  $G = B_0^{\mathbb{Z}}$ ?

We have  $B_0^{\mathbb{Z}} = \bigcap_{a \in \mathfrak{A}} B_2(a)$ , therefore  $\widehat{B}_0^{\mathbb{Z}} = \bigcup_{a \in \mathfrak{A}} \widehat{B_2(a)}$ . **Orbit method for**  $B_0^{\mathbb{Z}}$ . *Case 1)* 0-*dimensional orbits* are of the form:  $\mathcal{O}_0 = y$ ,  $y \in \mathfrak{b}_2^*(a)$ ,  $y = \sum_{k \in \mathbb{Z}} y_{k+1,k} E_{k+1,k}$ , give one-dimensional rep-s:  $B_2(a) \ni \exp(x) \mapsto \exp(2\pi i \langle y, x \rangle) \in S^1$ .

(人間) ト く ヨ ト く ヨ ト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

## Resume, conclusions

What we can say about  $\hat{G}$  for  $G = B_0^{\mathbb{Z}}$ ?

We have  $B_0^{\mathbb{Z}} = \bigcap_{a \in \mathfrak{A}} B_2(a)$ , therefore  $\widehat{B_0^{\mathbb{Z}}} = \bigcup_{a \in \mathfrak{A}} \widehat{B_2(a)}$ . Orbit method for  $B_0^{\mathbb{Z}}$ . Case 1) 0-dimensional orbits are of the form:  $\mathcal{O}_0 = y$ ,  $y \in \mathfrak{b}_2^*(a)$ ,  $y = \sum_{k \in \mathbb{Z}} y_{k+1,k} E_{k+1,k}$ , give one-dimensional rep-s:  $B_2(a) \ni \exp(x) \mapsto \exp(2\pi i (\langle y, x \rangle)) \in S^1$ . Case 2) The finite-dimensional orbits corresponding to finite points  $y = \sum_{(k,n) \in \mathbb{Z}, k > n} y_{kn} E_{kn} \in \mathfrak{b}_2^*(a)$ . Kirillov:  $\hat{G} \supset \bigcup_n \hat{G}_{2n-1}$ .

・ロト ・同ト ・ヨト ・ヨト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $GL_2(a)$  and  $B_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

#### Resume, conclusions

What we can say about  $\hat{G}$  for  $G = B_0^{\mathbb{Z}}$ ?

We have  $B_0^{\mathbb{Z}} = \bigcap_{a \in \mathfrak{A}} B_2(a)$ , therefore  $\widehat{B}_0^{\mathbb{Z}} = \bigcup_{a \in \mathfrak{A}} \widehat{B_2(a)}$ . Orbit method for  $B_0^{\mathbb{Z}}$ . Case 1) 0-dimensional orbits are of the form:  $\mathcal{O}_0 = y, \ y \in \mathfrak{b}_2^*(a), \ y = \sum_{k \in \mathbb{Z}} y_{k+1,k} E_{k+1,k}$ , give one-dimensional rep-s:  $B_2(a) \ni \exp(x) \mapsto \exp(2\pi i (\langle y, x \rangle)) \in S^1$ . Case 2) The finite-dimensional orbits corresponding to finite points  $y = \sum_{(k,n) \in \mathbb{Z}, k > n} y_{kn} E_{kn} \in \mathfrak{b}_2^*(a)$ . Kirillov:  $\widehat{G} \supset \bigcup_n \widehat{G}_{2n-1}$ . Case 3) Generic orbits are generated by points  $y^k \in \mathfrak{b}_2^*(a) \ k \in \mathbb{Z}$ ,  $y^k = \sum_{r+s=k, s \leq [(k-1)/2]} y_{rs} E_{rs}$ . Representations  $T^{y^k, 2m+1, \mu_b}$ .

・ロッ ・雪 ・ ・ ヨ ・ ・

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

## Resume, conclusions

What we can say about  $\hat{G}$  for  $G = B_0^{\mathbb{Z}}$ ?

We have  $B_0^{\mathbb{Z}} = \bigcap_{a \in \mathfrak{A}} B_2(a)$ , therefore  $\widehat{B_0^{\mathbb{Z}}} = \bigcup_{a \in \mathfrak{A}} \widehat{B_2(a)}$ . Orbit method for  $B_0^{\mathbb{Z}}$ . Case 1) 0-dimensional orbits are of the form:  $\mathcal{O}_0 = y, \ y \in \mathfrak{b}_2^*(a), \ y = \sum_{k \in \mathbb{Z}} y_{k+1,k} E_{k+1,k}$ , give one-dimensional rep-s:  $B_2(a) \ni \exp(x) \mapsto \exp(2\pi i (\langle y, x \rangle)) \in S^1$ . Case 2) The finite-dimensional orbits corresponding to finite points  $y = \sum_{(k,n) \in \mathbb{Z}, k > n} y_{kn} E_{kn} \in \mathfrak{b}_2^*(a)$ . Kirillov:  $\widehat{G} \supset \bigcup_n \widehat{G}_{2n-1}$ . Case 3) Generic orbits are generated by points  $y^k \in \mathfrak{b}_2^*(a) \ k \in \mathbb{Z}$ ,  $y^k = \sum_{r+s=k, s \leq [(k-1)/2]} y_{rs} E_{rs}$ . Representations  $T^{y^k, 2m+1, \mu_b}$ . Case 4) General orbits generated by points  $y \in \mathfrak{b}_2^*(a)$ . Cosrtuct?

・ロト ・得ト ・ヨト ・ヨト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

## Resume, conclusions

What we can say about  $\hat{G}$  for  $G = B_0^{\mathbb{Z}}$ ?

We have  $B_0^{\mathbb{Z}} = \bigcap_{a \in \mathfrak{A}} B_2(a)$ , therefore  $\widehat{B}_0^{\mathbb{Z}} = \bigcup_{a \in \mathfrak{A}} \widehat{B_2(a)}$ . Orbit method for  $B_0^{\mathbb{Z}}$ . Case 1) 0-dimensional orbits are of the form:  $\mathcal{O}_0 = y, y \in \mathfrak{b}_2^*(a), y = \sum_{k \in \mathbb{Z}} y_{k+1,k} E_{k+1,k}$ , give one-dimensional rep-s:  $B_2(a) \ni \exp(x) \mapsto \exp(2\pi i \langle \langle y, x \rangle)) \in S^1$ . Case 2) The finite-dimensional orbits corresponding to finite points  $y = \sum_{(k,n) \in \mathbb{Z}, k > n} y_{kn} E_{kn} \in \mathfrak{b}_2^*(a)$ . Kirillov:  $\hat{G} \supset \bigcup_n \hat{G}_{2n-1}$ . *Case 3) Generic orbits* are generated by points  $y^k \in \mathfrak{b}_2^*(a)$   $k \in \mathbb{Z}$ ,  $y^k = \sum_{r+s=k, s \leq \lfloor (k-1)/2 \rfloor} y_{rs} E_{rs}$ . Representations  $T^{y^k, 2m+1, \mu_b}$ . *Case 4) General orbits* generated by points  $y \in \mathfrak{b}_2^*(a)$ . Cosrtuct? 5) Regular representations  $T^{R,\mu} = \text{Ind}_{\mu}^{G}(S)$ . Irreducibility – Ismagilov conjecture. Equivalence  $T^{R,\mu_1} \sim T^{R,\mu_2} \Leftrightarrow \mu_1 \sim \mu_2$ .

・ロト ・同ト ・ヨト ・ヨト

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

## Resume, conclusions

What we can say about  $\hat{G}$  for  $G = B_0^{\mathbb{Z}}$ ?

We have  $B_0^{\mathbb{Z}} = \bigcap_{a \in \mathfrak{A}} B_2(a)$ , therefore  $\widehat{B}_0^{\mathbb{Z}} = \bigcup_{a \in \mathfrak{A}} \widehat{B_2(a)}$ . Orbit method for  $B_0^{\mathbb{Z}}$ . Case 1) 0-dimensional orbits are of the form:  $\mathcal{O}_0 = y, y \in \mathfrak{b}_2^*(a), y = \sum_{k \in \mathbb{Z}} y_{k+1,k} E_{k+1,k}$ , give one-dimensional rep-s:  $B_2(a) \ni \exp(x) \mapsto \exp(2\pi i (\langle y, x \rangle)) \in S^1$ . Case 2) The finite-dimensional orbits corresponding to finite points  $y = \sum_{(k,n) \in \mathbb{Z}, k > n} y_{kn} E_{kn} \in \mathfrak{b}_2^*(a)$ . Kirillov:  $\hat{G} \supset \bigcup_n \hat{G}_{2n-1}$ . *Case 3) Generic orbits* are generated by points  $y^k \in \mathfrak{b}_2^*(a)$   $k \in \mathbb{Z}$ ,  $y^k = \sum_{r+s=k, s \leq \lfloor (k-1)/2 \rfloor} y_{rs} E_{rs}$ . Representations  $T^{y^k, 2m+1, \mu_b}$ . *Case 4) General orbits* generated by points  $y \in \mathfrak{b}_2^*(a)$ . Cosrtuct? 5) Regular representations  $T^{R,\mu} = \operatorname{Ind}_{H}^{G}(S)$ . Irreducibility – Ismagilov conjecture. Equivalence  $T^{R,\mu_1} \sim T^{R,\mu_2} \Leftrightarrow \mu_1 \sim \mu_2$ . 6) Quasiregular representation. Irredusibility, equivalence...

Regular and quasiregular representations Induced representations, definition Hilbert Lie groups  $\operatorname{GL}_2(a)$  and  $\operatorname{B}_2(a)$ The space of orbits for  $B_0^-$  and  $B_2(a)$ Induced representations for generic orbits

#### [1] G. Frobenius, Sitz. Preuss. Akad. Wiss. Berlin, 501 (1898).

- [2] A.A. Kirillov, Introduction to the theory of representations and noncommutative harmonic analysis, Representation theory and noncommutative harmonic analysis, I, Encyclopaedia Math. Sci., Vol. 22, Springer, Berlin, 1994, pp. 1–156.
- [3] A.V. Kosyak, Extension of unitary representations of inductive limits of finite-dimensional Lie groups, Rep. Math. Phys. 26/2 (1988) 129–148.

[4] A.V. Kosyak, Criteria for irreducibility and equivalence of regular Gaussian representations of group of finite upper triangular matrices of infinite order, Selecta Math. Soviet. 11 (1992) 241–291.