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NOTATION.
Let K be a non-Archimedean local field, that is a non-discrete
totally disconnected locally compact topological field, endowed
with an absolute value | · |K .

q is the cardinality of the residue field.

Spaces of test functions and distributions:

D(K ) is the set of all locally constant complex-valued functions on
K with compact supports (with the topology of double inductive
limit). The strong conjugate space D′(K ) is called the space of
Bruhat-Schwartz distributions.
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Ψ(K ) = {ψ ∈ D(K ) : ψ(0) = 0} ,

Φ(K ) =

ϕ ∈ D(K ) :

∫
K

ϕ(x) dx = 0

 .

The Fourier transform F is a linear isomorphism from Ψ(K ) onto
Φ(K ), thus also from Φ′(K ) onto Ψ′(K ). The spaces Φ(K ) and
Φ′(K ) are called the Lizorkin spaces (of the second kind) of test
functions and distributions respectively.

Two distributions differing by a constant summand coincide as
elements of Φ′(K ).
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Fractional differentiation operator Dα, α > 0:

(Dαϕ) (x) = F−1 [|ξ|α(F(ϕ))(ξ)] (x).

Dα does not act on the space D(K ), since the function ξ 7→ |ξ|α is
not locally constant. On the other hand, Dα : Φ(K )→ Φ(K ) and
Dα : Φ′(K )→ Φ′(K ), and that was a motivation to introduce
these spaces.

The operator Dα can also be represented as a hypersingular
integral operator:

(Dαϕ) (x) =
1− qα

1− q−α−1

∫
K

|y |−α−1[ϕ(x − y)− ϕ(x)] dy .

This expression makes sense for wider classes of functions.
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Definition of D−α, α > 0:

(
D−αϕ

)
(x) = (fα∗ϕ)(x) =

1− q−α

1− qα−1

∫
K

|x−y |α−1
K ϕ(y) dy , ϕ ∈ D(K ),

(α 6= 1),and

(
D−1ϕ

)
(x) =

1− q

q log q

∫
K

log |x − y |Kϕ(y) dy .

Then DαD−α = I on D(K ), if α 6= 1. This property remains valid
on Φ(K ) also for α = 1.
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V. S. Vladimirov: Properties of Dα are complicated.

As an operator on L2(Qp), it has a point spectrum of infinite
multiplicity.

The equation Dα
t u − Dα

x u = 0 has no fundamental solution.

However there is a well-developed theory of this equation and a
more general one, with several spatial variables, with the
assumption that a solution is radial in t, that is depends on |t|K :

A. N. Kochubei, A non-Archimedean wave equation, Pacif. J.
Math. 235 (2008), 245–261.
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Lemma 1

If a function u = u(|x |K ) is such that

m∑
k=−∞

qk
∣∣∣u(qk)

∣∣∣ <∞, ∞∑
l=m

q−αl
∣∣∣u(ql)

∣∣∣ <∞,
for some m ∈ Z, then for each n ∈ Z the hypersingular integral
expression for Dαϕ with ϕ(x) = u(|x |K ) exists for |x |K = qn,
depends only on |x |K , and

(Dαu)(qn) = dα

(
1− 1

q

)
q−(α+1)n

n−1∑
k=−∞

qku(qk)

+ q−αn−1 qα + q − 2

1− q−α−1
u(qn) + dα

(
1− 1

q

) ∞∑
l=n+1

q−αlu(ql).
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Definition

We say that the action Dαu, α > 0, on a radial function u is
defined in the strong sense, if the function u satisfies the
conditions of Lemma 1, which gives the expression of Dαu(|x |K ),
|x |K 6= 0, and there exists the limit

Dαu(0)
def
= lim

x→0
Dαu(|x |K ).

It is evident from the hypersingular integral formula that Dα

annihilates constant functions (recall that in Φ′(K ) they are
equivalent to zero). Therefore D−α is not the only possible choice
of the right inverse to Dα. In particular, we will use
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(Iαϕ)(x) = (D−αϕ)(x)− (D−αϕ)(0).

This is defined initially for ϕ ∈ D(K ). It is seen from the
ultrametric property of the absolute value that

(Iαϕ)(x) =
1− q−α

1− qα−1

∫
|y |K≤|x |K

(
|x − y |α−1

K − |y |α−1
K

)
ϕ(y) dy , α 6= 1,

and

(I 1ϕ)(x) =
1− q

q log q

∫
|y |K≤|x |K

(log |x − y |K − log |y |K )ϕ(y) dy .
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Let us calculate Iαu for a radial function u = u(|x |K ). Obviously,
(Iαu)(0) = 0 whenever Iα is defined.

Lemma 2

Suppose that

m∑
k=−∞

max
(

qk , qαk
) ∣∣∣u(qk)

∣∣∣ <∞, α 6= 1;

m∑
k=−∞

|k|qk
∣∣∣u(qk)

∣∣∣ <∞, α = 1,

for some m ∈ Z. Then Iαu exists, it is a radial function, and for
any x 6= 0,
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(Iαu)(|x |K ) = q−α|x |αKu(|x |K )

+
1− q−α

1− qα−1

∫
|y |K<|x |K

(
|x |α−1

K − |y |α−1
K

)
u(|y |K ) dy , α 6= 1,

and

(I 1u)(|x |K ) = q−1|x |Ku(|x |K )

+
1− q

q log q

∫
|y |K<|x |K

(log |x |K − log |y |K ) u(|y |K ) dy .
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Lemma 3

Suppose that for some m ∈ Z,

m∑
k=−∞

max
(

qk , qαk
) ∣∣∣v(qk)

∣∣∣ <∞, ∞∑
l=m

∣∣∣v(ql)
∣∣∣ <∞,

if α 6= 1, and

m∑
k=−∞

|k |qk
∣∣∣v(qk)

∣∣∣ <∞, ∞∑
l=m

l
∣∣∣v(ql)

∣∣∣ <∞,
if α = 1. Then there exists (DαIαv) (|x |K ) = v(|x |K ) for any
x 6= 0.
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Using Lemma 3, we can consider the simplest Cauchy problem

Dαu(|x |K ) = f (|x |K ), u(0) = 0,

where f is a continuous function, such that

∞∑
l=m

∣∣∣f (ql)
∣∣∣ <∞, if α 6= 1, or

∞∑
l=m

l
∣∣∣f (ql)

∣∣∣ <∞, if α = 1.

The unique strong solution is u = Iαf . Therefore on radial
functions, the operators Dα and Iα behave like the fractional
derivative and fractional integral of real analysis. An example of a
different behavior in the non-Archimedean case:

Let f (|x |K ) ≡ 1, x ∈ K . Then (Iαf ) (|x |K ) ≡ 0.
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In the class of radial functions u = u(|x |K ), we consider the
Cauchy problem

Dαu + a(|x |K )u = f (|x |K ), x ∈ K , (1)

u(0) = 0, (2)

where a and f are continuous functions, that is they have finite
limits a(0) and f (0), as x → 0.
Looking for a solution of the form u = Iαv , where v is a radial
function, we obtain formally an integral equation

v(|x |K ) + a(|x |K ) (Iαv) (|x |K ) = f (|x |K ), x ∈ K .
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By Lemma 2, the latter equation can be written in the form[
1 + q−αa(|x |K )|x |αK

]
v(|x |K )

+cαa(|x |K )

∫
|y |K<|x |K

(
|x |α−1

K − |y |α−1
K

)
v(|y |K ) dy = f (|x |K ), x 6= 0,

where cα =
1− q−α

1− qα−1
.

Since a is continuous, there exists such N ∈ Z that

q−αa(|x |K )|x |αK < 1 for |x |K ≤ qN .

On the ball BN =
{

x ∈ K : |x |K ≤ qN
}

, the equation takes the
form

v(|x |K ) +

∫
|y |K<|x |K

kα(x , y)v(|y |K ) dy = F (|x |K ) (3)
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where for α 6= 1,

kα(x , y) =
[
1 + q−αa(|x |K )|x |αK

]−1
cαa(|x |K )

(
|x |α−1

K − |y |α−1
K

)
(x 6= 0), kα(0, y) = 0, F (|x |K ) = [1 + q−αa(|x |K )|x |αK ]

−1
f (|x |K ).

If α = 1, then

k1(x , y) =
1− q

q log q

[
1 + q−1a(|x |K )|x |K

]−1
a(|x |K ) (log |x |K − log |y |K )

(x 6= 0), k1(0, y) = 0, F (|x |K ) =
[
1 + q−1a(|x |K )|x |K

]−1
f (|x |K ).
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If we construct a solution on BN , and if

a(|x |K ) 6= −qαm for any x ∈ K , m ∈ Z, (4)

we will be able to construct a solution successively for all x ∈ K .
Further on, the condition (4) is satisfied.

Theorem 1

For each α > 0, the integral equation (3) has a unique continuous
solution on BN .

The integral operator in (3) is compact on C (BN) and has no
nonzero eigenvalues.
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In general, the function u = Iαv satisfies (1) in the sense of
distributions from Φ′. The initial condition (2) is satisfied
automatically.
Let us find additional conditions on a and f , under which this
construction gives a strong solution of the Cauchy problem (1)-(2).
A strong solution is unique in the class of functions u = Iαv where

v is a continuous radial function, such that
∞∑
l=m

∣∣v(ql)
∣∣ <∞ for

sum m ∈ Z.

Theorem 2

Suppose that

|a(|x |K )| ≤ C |x |−α−εK , |f (|x |K )| ≤ C |x |−εK , ε > 0,C > 0,

as |x |K > 1. Then u = Iαv is a strong solution of the Cauchy
problem (4.1)-(4.2).
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Instead of (2), one can consider an inhomogeneous initial condition
u(0) = u0, u0 ∈ C. Looking for a solution in the form
u = u0 + Iαv , v = v(|x |K ), we obtain the integral equation

v(|x |K ) + a(|x |K ) (Iαv) (|x |K ) = f (|x |K )− a(|x |K )u0,

which can be studied under the same assumptions.

All the above results carry over to the case of a matrix-valued
coefficient a(|x |K ) and vector-valued solutions. In this case, to
obtain a strong solution, it is sufficient to demand that the
spectrum of each matrix a(|x |K ), x ∈ K , does not intersect the set
{−qN ,N ∈ Z}.
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