Radial Solutions of Non-Archimedean Pseudo-Differential Equations

Anatoly N. Kochubei

Institute of Mathematics, National Academy of Sciences of Ukraine

NOTATION.

Let K be a non-Archimedean local field, that is a non-discrete totally disconnected locally compact topological field, endowed with an absolute value $|\cdot|_{K}$.

q is the cardinality of the residue field.

Spaces of test functions and distributions:

 $\mathcal{D}(K)$ is the set of all locally constant complex-valued functions on K with compact supports (with the topology of double inductive limit). The strong conjugate space $\mathcal{D}'(K)$ is called the space of Bruhat-Schwartz distributions.

$$\Psi(\mathcal{K}) = \left\{ \psi \in \mathcal{D}(\mathcal{K}) : \psi(0) = 0 \right\},$$
$$\Phi(\mathcal{K}) = \left\{ \varphi \in \mathcal{D}(\mathcal{K}) : \int_{\mathcal{K}} \varphi(x) \, dx = 0 \right\}$$

The Fourier transform \mathcal{F} is a linear isomorphism from $\Psi(K)$ onto $\Phi(K)$, thus also from $\Phi'(K)$ onto $\Psi'(K)$. The spaces $\Phi(K)$ and $\Phi'(K)$ are called the Lizorkin spaces (of the second kind) of test functions and distributions respectively.

Two distributions differing by a constant summand coincide as elements of $\Phi'(K)$.

Fractional differentiation operator D^{α} , $\alpha > 0$:

$$(D^{\alpha}\varphi)(x) = \mathcal{F}^{-1}[|\xi|^{\alpha}(\mathcal{F}(\varphi))(\xi)](x).$$

 D^{α} does not act on the space $\mathcal{D}(K)$, since the function $\xi \mapsto |\xi|^{\alpha}$ is not locally constant. On the other hand, $D^{\alpha} : \Phi(K) \to \Phi(K)$ and $D^{\alpha} : \Phi'(K) \to \Phi'(K)$, and that was a motivation to introduce these spaces.

The operator D^{α} can also be represented as a hypersingular integral operator:

$$(D^{\alpha}\varphi)(x) = rac{1-q^{lpha}}{1-q^{-lpha-1}}\int\limits_{K}|y|^{-lpha-1}[\varphi(x-y)-\varphi(x)]\,dy.$$

This expression makes sense for wider classes of functions.

Definition of $D^{-\alpha}$, $\alpha > 0$:

$$\left(D^{-\alpha}\varphi\right)(x)=(f_{\alpha}*\varphi)(x)=rac{1-q^{-\alpha}}{1-q^{\alpha-1}}\int\limits_{K}|x-y|_{K}^{\alpha-1}\varphi(y)\,dy,\ \varphi\in\mathcal{D}(K),$$

(lpha
eq 1),and

$$(D^{-1}\varphi)(x) = \frac{1-q}{q\log q} \int_{K} \log |x-y|_{K}\varphi(y) \, dy.$$

Then $D^{\alpha}D^{-\alpha} = I$ on $\mathcal{D}(K)$, if $\alpha \neq 1$. This property remains valid on $\Phi(K)$ also for $\alpha = 1$.

< /₽ > < 三

V. S. Vladimirov: Properties of D^{α} are complicated.

As an operator on $L_2(\mathbb{Q}_p)$, it has a point spectrum of infinite multiplicity.

The equation $D_t^{\alpha}u - D_x^{\alpha}u = 0$ has no fundamental solution.

However there is a well-developed theory of this equation and a more general one, with several spatial variables, with the assumption that a solution is radial in t, that is depends on $|t|_{K}$:

A. N. Kochubei, A non-Archimedean wave equation, *Pacif. J. Math.* **235** (2008), 245–261.

Lemma 1

If a function $u = u(|x|_{K})$ is such that

$$\sum_{k=-\infty}^{m} q^k \left| u(q^k) \right| < \infty, \quad \sum_{l=m}^{\infty} q^{-lpha l} \left| u(q^l) \right| < \infty,$$

for some $m \in \mathbb{Z}$, then for each $n \in \mathbb{Z}$ the hypersingular integral expression for $D^{\alpha}\varphi$ with $\varphi(x) = u(|x|_{K})$ exists for $|x|_{K} = q^{n}$, depends only on $|x|_{K}$, and

$$(D^{lpha}u)(q^n) = d_{lpha}\left(1-rac{1}{q}
ight)q^{-(lpha+1)n}\sum_{k=-\infty}^{n-1}q^ku(q^k) \ + q^{-lpha n-1}rac{q^{lpha}+q-2}{1-q^{-lpha-1}}u(q^n) + d_{lpha}\left(1-rac{1}{q}
ight)\sum_{l=n+1}^{\infty}q^{-lpha l}u(q^l).$$

Definition

We say that the action $D^{\alpha}u$, $\alpha > 0$, on a radial function u is defined in the strong sense, if the function u satisfies the conditions of Lemma 1, which gives the expression of $D^{\alpha}u(|x|_{K})$, $|x|_{K} \neq 0$, and there exists the limit

$$D^{\alpha}u(0) \stackrel{def}{=} \lim_{x \to 0} D^{\alpha}u(|x|_{\kappa}).$$

It is evident from the hypersingular integral formula that D^{α} annihilates constant functions (recall that in $\Phi'(K)$ they are equivalent to zero). Therefore $D^{-\alpha}$ is not the only possible choice of the right inverse to D^{α} . In particular, we will use

$$(I^{\alpha}\varphi)(x) = (D^{-\alpha}\varphi)(x) - (D^{-\alpha}\varphi)(0).$$

This is defined initially for $\varphi \in \mathcal{D}(K)$. It is seen from the ultrametric property of the absolute value that

$$(I^{\alpha}\varphi)(x) = \frac{1-q^{-\alpha}}{1-q^{\alpha-1}} \int_{|y|_{\mathcal{K}} \le |x|_{\mathcal{K}}} \left(|x-y|_{\mathcal{K}}^{\alpha-1} - |y|_{\mathcal{K}}^{\alpha-1} \right) \varphi(y) \, dy, \ \alpha \neq 1,$$

and

$$(I^{1}\varphi)(x) = rac{1-q}{q\log q} \int\limits_{|y|_{K} \leq |x|_{K}} (\log |x-y|_{K} - \log |y|_{K}) \varphi(y) \, dy.$$

Let us calculate $I^{\alpha}u$ for a radial function $u = u(|x|_{\mathcal{K}})$. Obviously, $(I^{\alpha}u)(0) = 0$ whenever I^{α} is defined.

Lemma 2

Suppose that

$$\sum_{k=-\infty}^{m}\max\left(q^{k},q^{lpha k}
ight)\left|u(q^{k})
ight|<\infty,lpha
eq1;$$

$$\sum_{k=-\infty}^{m} |k|q^{k} \left| u(q^{k}) \right| < \infty, \ \alpha = 1,$$

for some $m \in \mathbb{Z}$. Then $I^{\alpha}u$ exists, it is a radial function, and for any $x \neq 0$,

$$(I^{\alpha}u)(|x|_{\mathcal{K}}) = q^{-\alpha}|x|_{\mathcal{K}}^{\alpha}u(|x|_{\mathcal{K}}) + \frac{1-q^{-\alpha}}{1-q^{\alpha-1}} \int_{|y|_{\mathcal{K}} < |x|_{\mathcal{K}}} (|x|_{\mathcal{K}}^{\alpha-1} - |y|_{\mathcal{K}}^{\alpha-1}) u(|y|_{\mathcal{K}}) dy, \quad \alpha \neq 1,$$

and

$$(I^{1}u)(|x|_{\mathcal{K}}) = q^{-1}|x|_{\mathcal{K}}u(|x|_{\mathcal{K}}) + \frac{1-q}{q\log q} \int_{|y|_{\mathcal{K}} < |x|_{\mathcal{K}}} (\log |x|_{\mathcal{K}} - \log |y|_{\mathcal{K}}) u(|y|_{\mathcal{K}}) dy.$$

æ

Lemma 3

Suppose that for some $m \in \mathbb{Z}$,

$$\sum_{k=-\infty}^m \max\left(q^k,q^{lpha k}
ight) \left| v(q^k)
ight| < \infty, \quad \sum_{l=m}^\infty \left| v(q^l)
ight| < \infty,$$

 $\textit{if } \alpha \neq \textbf{1, and} \\$

$$\sum_{k=-\infty}^{m} |k|q^k \left| v(q^k) \right| < \infty, \quad \sum_{l=m}^{\infty} l \left| v(q^l) \right| < \infty,$$

if $\alpha = 1$. Then there exists $(D^{\alpha}I^{\alpha}v)(|x|_{\mathcal{K}}) = v(|x|_{\mathcal{K}})$ for any $x \neq 0$.

Image: A = A

Using Lemma 3, we can consider the simplest Cauchy problem

$$D^{\alpha}u(|x|_{\mathcal{K}})=f(|x|_{\mathcal{K}}), \quad u(0)=0,$$

where f is a continuous function, such that

$$\sum_{l=m}^{\infty} \left| f(q^{l}) \right| < \infty, \text{ if } \alpha \neq 1 \text{, or } \sum_{l=m}^{\infty} l \left| f(q^{l}) \right| < \infty, \text{ if } \alpha = 1.$$

The unique strong solution is $u = I^{\alpha}f$. Therefore on radial functions, the operators D^{α} and I^{α} behave like the fractional derivative and fractional integral of real analysis. An example of a different behavior in the non-Archimedean case:

Let
$$f(|x|_{\mathcal{K}}) \equiv 1$$
, $x \in \mathcal{K}$. Then $(I^{\alpha}f)(|x|_{\mathcal{K}}) \equiv 0$.

In the class of radial functions $u = u(|x|_{\mathcal{K}})$, we consider the Cauchy problem

$$D^{\alpha}u + a(|x|_{\mathcal{K}})u = f(|x|_{\mathcal{K}}), \quad x \in \mathcal{K},$$
(1)

$$u(0)=0, \qquad (2)$$

where *a* and *f* are continuous functions, that is they have finite limits a(0) and f(0), as $x \to 0$. Looking for a solution of the form $u = I^{\alpha}v$, where *v* is a radial function, we obtain formally an integral equation

$$v(|x|_{\mathcal{K}}) + a(|x|_{\mathcal{K}})(I^{\alpha}v)(|x|_{\mathcal{K}}) = f(|x|_{\mathcal{K}}), \quad x \in \mathcal{K}.$$

By Lemma 2, the latter equation can be written in the form

$$\begin{bmatrix} 1+q^{-\alpha}a(|x|_{\mathcal{K}})|x|_{\mathcal{K}}^{\alpha} \end{bmatrix}v(|x|_{\mathcal{K}}) \\ +c_{\alpha}a(|x|_{\mathcal{K}})\int_{|y|_{\mathcal{K}}<|x|_{\mathcal{K}}}\left(|x|_{\mathcal{K}}^{\alpha-1}-|y|_{\mathcal{K}}^{\alpha-1}\right)v(|y|_{\mathcal{K}})\,dy=f(|x|_{\mathcal{K}}),\,x\neq0,$$

where $c_{lpha}=rac{1-q^{-lpha}}{1-q^{lpha-1}}.$ Since *a* is continuous, there exists such $N\in\mathbb{Z}$ that

$$q^{-lpha} a(|x|_{\mathcal{K}}) |x|_{\mathcal{K}}^{lpha} < 1 \quad ext{for } |x|_{\mathcal{K}} \leq q^{\mathcal{N}}.$$

On the ball $B_N = \{x \in K : |x|_K \le q^N\}$, the equation takes the form

$$v(|x|_{\mathcal{K}}) + \int_{|y|_{\mathcal{K}} < |x|_{\mathcal{K}}} k_{\alpha}(x, y)v(|y|_{\mathcal{K}}) dy = F(|x|_{\mathcal{K}})$$
(3)

where for $\alpha \neq 1$,

$$k_{\alpha}(x,y) = \left[1 + q^{-\alpha} a(|x|_{K})|x|_{K}^{\alpha}\right]^{-1} c_{\alpha} a(|x|_{K}) \left(|x|_{K}^{\alpha-1} - |y|_{K}^{\alpha-1}\right)$$
$$(x \neq 0), \ k_{\alpha}(0,y) = 0, \ F(|x|_{K}) = \left[1 + q^{-\alpha} a(|x|_{K})|x|_{K}^{\alpha}\right]^{-1} f(|x|_{K}).$$
If $\alpha = 1$, then

$$k_1(x, y) = \frac{1-q}{q \log q} \left[1 + q^{-1} a(|x|_{\mathcal{K}}) |x|_{\mathcal{K}} \right]^{-1} a(|x|_{\mathcal{K}}) \left(\log |x|_{\mathcal{K}} - \log |y|_{\mathcal{K}} \right)$$
$$(x \neq 0), \ k_1(0, y) = 0, \ F(|x|_{\mathcal{K}}) = \left[1 + q^{-1} a(|x|_{\mathcal{K}}) |x|_{\mathcal{K}} \right]^{-1} f(|x|_{\mathcal{K}}).$$

・ロット (雪) () () (

문 🛌 문

If we construct a solution on B_N , and if

$$a(|x|_K) \neq -q^{lpha m}$$
 for any $x \in K$, $m \in \mathbb{Z}$, (4)

we will be able to construct a solution **successively** for all $x \in K$. Further on, the condition (4) is satisfied.

Theorem 1

For each $\alpha > 0$, the integral equation (3) has a unique continuous solution on B_N .

The integral operator in (3) is compact on $C(B_N)$ and has no nonzero eigenvalues.

In general, the function $u = I^{\alpha}v$ satisfies (1) in the sense of distributions from Φ' . The initial condition (2) is satisfied automatically.

Let us find additional conditions on *a* and *f*, under which this construction gives a strong solution of the Cauchy problem (1)-(2). A strong solution is unique in the class of functions $u = I^{\alpha}v$ where v is a continuous radial function, such that $\sum_{l=m}^{\infty} |v(q^l)| < \infty$ for sum $m \in \mathbb{Z}$.

Theorem 2

Suppose that

 $|a(|x|_{\mathcal{K}})| \leq C|x|_{\mathcal{K}}^{-lpha-arepsilon}, \quad |f(|x|_{\mathcal{K}})| \leq C|x|_{\mathcal{K}}^{-arepsilon}, \quad arepsilon > 0, \ \mathcal{C} > 0,$

as $|x|_{\mathcal{K}} > 1$. Then $u = I^{\alpha}v$ is a strong solution of the Cauchy problem (4.1)-(4.2).

Instead of (2), one can consider an inhomogeneous initial condition $u(0) = u_0, u_0 \in \mathbb{C}$. Looking for a solution in the form $u = u_0 + I^{\alpha}v, v = v(|x|_{\mathcal{K}})$, we obtain the integral equation

$$v(|x|_{\mathcal{K}}) + a(|x|_{\mathcal{K}})(I^{\alpha}v)(|x|_{\mathcal{K}}) = f(|x|_{\mathcal{K}}) - a(|x|_{\mathcal{K}})u_0,$$

which can be studied under the same assumptions.

All the above results carry over to the case of a matrix-valued coefficient $a(|x|_{K})$ and vector-valued solutions. In this case, to obtain a strong solution, it is sufficient to demand that the spectrum of each matrix $a(|x|_{K})$, $x \in K$, does not intersect the set $\{-q^{N}, N \in \mathbb{Z}\}$.