Radial Solutions of Non-Archimedean Pseudo-Differential Equations

Anatoly N. Kochubei

Institute of Mathematics, National Academy of Sciences of Ukraine

NOTATION.

Let K be a non-Archimedean local field, that is a non-discrete totally disconnected locally compact topological field, endowed with an absolute value $|\cdot|_{K}$.
q is the cardinality of the residue field.
Spaces of test functions and distributions:
$\mathcal{D}(K)$ is the set of all locally constant complex-valued functions on K with compact supports (with the topology of double inductive limit). The strong conjugate space $\mathcal{D}^{\prime}(K)$ is called the space of Bruhat-Schwartz distributions.

$$
\begin{gathered}
\Psi(K)=\{\psi \in \mathcal{D}(K): \psi(0)=0\}, \\
\Phi(K)=\left\{\varphi \in \mathcal{D}(K): \int_{K} \varphi(x) d x=0\right\} .
\end{gathered}
$$

The Fourier transform \mathcal{F} is a linear isomorphism from $\Psi(K)$ onto $\Phi(K)$, thus also from $\Phi^{\prime}(K)$ onto $\Psi^{\prime}(K)$. The spaces $\Phi(K)$ and $\Phi^{\prime}(K)$ are called the Lizorkin spaces (of the second kind) of test functions and distributions respectively.

Two distributions differing by a constant summand coincide as elements of $\Phi^{\prime}(K)$.

Fractional differentiation operator $D^{\alpha}, \alpha>0$:

$$
\left(D^{\alpha} \varphi\right)(x)=\mathcal{F}^{-1}\left[|\xi|^{\alpha}(\mathcal{F}(\varphi))(\xi)\right](x) .
$$

D^{α} does not act on the space $\mathcal{D}(K)$, since the function $\xi \mapsto|\xi|^{\alpha}$ is not locally constant. On the other hand, $D^{\alpha}: \Phi(K) \rightarrow \Phi(K)$ and $D^{\alpha}: \Phi^{\prime}(K) \rightarrow \Phi^{\prime}(K)$, and that was a motivation to introduce these spaces.

The operator D^{α} can also be represented as a hypersingular integral operator:

$$
\left(D^{\alpha} \varphi\right)(x)=\frac{1-q^{\alpha}}{1-q^{-\alpha-1}} \int_{K}|y|^{-\alpha-1}[\varphi(x-y)-\varphi(x)] d y .
$$

This expression makes sense for wider classes of functions.

Definition of $D^{-\alpha}, \alpha>0$:

$$
\left(D^{-\alpha} \varphi\right)(x)=\left(f_{\alpha} * \varphi\right)(x)=\frac{1-q^{-\alpha}}{1-q^{\alpha-1}} \int_{K}|x-y|_{K}^{\alpha-1} \varphi(y) d y, \varphi \in \mathcal{D}(K)
$$

$(\alpha \neq 1)$, and

$$
\left(D^{-1} \varphi\right)(x)=\frac{1-q}{q \log q} \int_{K} \log |x-y|_{K} \varphi(y) d y .
$$

Then $D^{\alpha} D^{-\alpha}=I$ on $\mathcal{D}(K)$, if $\alpha \neq 1$. This property remains valid on $\Phi(K)$ also for $\alpha=1$.
V. S. Vladimirov: Properties of D^{α} are complicated.

As an operator on $L_{2}\left(\mathbb{Q}_{p}\right)$, it has a point spectrum of infinite multiplicity.

The equation $D_{t}^{\alpha} u-D_{x}^{\alpha} u=0$ has no fundamental solution.
However there is a well-developed theory of this equation and a more general one, with several spatial variables, with the assumption that a solution is radial in t, that is depends on $|t|_{K}$: A. N. Kochubei, A non-Archimedean wave equation, Pacif. J. Math. 235 (2008), 245-261.

Lemma 1

If a function $u=u\left(|x|_{K}\right)$ is such that

$$
\sum_{k=-\infty}^{m} q^{k}\left|u\left(q^{k}\right)\right|<\infty, \quad \sum_{l=m}^{\infty} q^{-\alpha l}\left|u\left(q^{\prime}\right)\right|<\infty
$$

for some $m \in \mathbb{Z}$, then for each $n \in \mathbb{Z}$ the hypersingular integral expression for $D^{\alpha} \varphi$ with $\varphi(x)=u\left(|x|_{K}\right)$ exists for $|x|_{K}=q^{n}$, depends only on $|x|_{K}$, and

$$
\begin{aligned}
& \left(D^{\alpha} u\right)\left(q^{n}\right)=d_{\alpha}\left(1-\frac{1}{q}\right) q^{-(\alpha+1) n} \sum_{k=-\infty}^{n-1} q^{k} u\left(q^{k}\right) \\
& \quad+q^{-\alpha n-1} \frac{q^{\alpha}+q-2}{1-q^{-\alpha-1}} u\left(q^{n}\right)+d_{\alpha}\left(1-\frac{1}{q}\right) \sum_{I=n+1}^{\infty} q^{-\alpha l} u\left(q^{\prime}\right)
\end{aligned}
$$

Definition

We say that the action $D^{\alpha} u, \alpha>0$, on a radial function u is defined in the strong sense, if the function u satisfies the conditions of Lemma 1, which gives the expression of $D^{\alpha} u\left(|x|_{K}\right)$, $|x|_{K} \neq 0$, and there exists the limit

$$
D^{\alpha} u(0) \stackrel{\text { def }}{=} \lim _{x \rightarrow 0} D^{\alpha} u\left(|x|_{K}\right)
$$

It is evident from the hypersingular integral formula that D^{α} annihilates constant functions (recall that in $\Phi^{\prime}(K)$ they are equivalent to zero). Therefore $D^{-\alpha}$ is not the only possible choice of the right inverse to D^{α}. In particular, we will use

$$
\left(I^{\alpha} \varphi\right)(x)=\left(D^{-\alpha} \varphi\right)(x)-\left(D^{-\alpha} \varphi\right)(0) .
$$

This is defined initially for $\varphi \in \mathcal{D}(K)$. It is seen from the ultrametric property of the absolute value that

$$
\left(I^{\alpha} \varphi\right)(x)=\frac{1-q^{-\alpha}}{1-q^{\alpha-1}} \int_{|y|_{K} \leq|x|_{K}}\left(|x-y|_{K}^{\alpha-1}-|y|_{K}^{\alpha-1}\right) \varphi(y) d y, \alpha \neq 1
$$

and

$$
\left(I^{1} \varphi\right)(x)=\frac{1-q}{q \log q} \int_{|y|_{K} \leq|x|_{K}}\left(\log |x-y|_{K}-\log |y|_{K}\right) \varphi(y) d y
$$

Let us calculate $I^{\alpha} u$ for a radial function $u=u\left(|x|_{K}\right)$. Obviously, $\left(I^{\alpha} u\right)(0)=0$ whenever I^{α} is defined.

Lemma 2

Suppose that

$$
\begin{gathered}
\sum_{k=-\infty}^{m} \max \left(q^{k}, q^{\alpha k}\right)\left|u\left(q^{k}\right)\right|<\infty, \alpha \neq 1 \\
\sum_{k=-\infty}^{m}|k| q^{k}\left|u\left(q^{k}\right)\right|<\infty, \alpha=1
\end{gathered}
$$

for some $m \in \mathbb{Z}$. Then $I^{\alpha} u$ exists, it is a radial function, and for any $x \neq 0$,

$$
\begin{aligned}
& \left(I^{\alpha} u\right)\left(|x|_{K}\right)=q^{-\alpha}|x|_{K}^{\alpha} u\left(|x|_{K}\right) \\
& \quad+\frac{1-q^{-\alpha}}{1-q^{\alpha-1}} \int_{|y|_{K}<|x|_{K}}\left(|x|_{K}^{\alpha-1}-|y|_{K}^{\alpha-1}\right) u\left(|y|_{K}\right) d y, \quad \alpha \neq 1,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(I^{1} u\right)\left(|x|_{K}\right)= & q^{-1}|x|_{K} u\left(|x|_{K}\right) \\
& +\frac{1-q}{q \log q} \int_{|y|_{K}<|x|_{K}}\left(\log |x|_{K}-\log |y|_{K}\right) u\left(|y|_{K}\right) d y .
\end{aligned}
$$

Lemma 3

Suppose that for some $m \in \mathbb{Z}$,

$$
\sum_{k=-\infty}^{m} \max \left(q^{k}, q^{\alpha k}\right)\left|v\left(q^{k}\right)\right|<\infty, \quad \sum_{l=m}^{\infty}\left|v\left(q^{l}\right)\right|<\infty
$$

if $\alpha \neq 1$, and

$$
\sum_{k=-\infty}^{m}|k| q^{k}\left|v\left(q^{k}\right)\right|<\infty, \quad \sum_{l=m}^{\infty} I\left|v\left(q^{\prime}\right)\right|<\infty
$$

if $\alpha=1$. Then there exists $\left(\left.D^{\alpha}\right|^{\alpha} v\right)\left(|x|_{K}\right)=v\left(|x|_{K}\right)$ for any $x \neq 0$.

Using Lemma 3, we can consider the simplest Cauchy problem

$$
D^{\alpha} u\left(|x|_{K}\right)=f\left(|x|_{K}\right), \quad u(0)=0
$$

where f is a continuous function, such that

$$
\sum_{l=m}^{\infty}\left|f\left(q^{\prime}\right)\right|<\infty, \text { if } \alpha \neq 1, \text { or } \sum_{l=m}^{\infty} l\left|f\left(q^{\prime}\right)\right|<\infty, \text { if } \alpha=1
$$

The unique strong solution is $u=I^{\alpha} f$. Therefore on radial functions, the operators D^{α} and I^{α} behave like the fractional derivative and fractional integral of real analysis. An example of a different behavior in the non-Archimedean case:
Let $f\left(|x|_{K}\right) \equiv 1, x \in K$. Then $\left(I^{\alpha} f\right)\left(|x|_{K}\right) \equiv 0$.

In the class of radial functions $u=u\left(|x|_{K}\right)$, we consider the
Cauchy problem

$$
\begin{gather*}
D^{\alpha} u+a\left(|x|_{K}\right) u=f\left(|x|_{K}\right), \quad x \in K \tag{1}\\
u(0)=0 \tag{2}
\end{gather*}
$$

where a and f are continuous functions, that is they have finite limits $a(0)$ and $f(0)$, as $x \rightarrow 0$.
Looking for a solution of the form $u=I^{\alpha} v$, where v is a radial function, we obtain formally an integral equation

$$
v\left(|x|_{K}\right)+a\left(|x|_{K}\right)\left(I^{\alpha} v\right)\left(|x|_{K}\right)=f\left(|x|_{K}\right), \quad x \in K
$$

By Lemma 2, the latter equation can be written in the form

$$
\left[1+q^{-\alpha} a(|x| K)|x|_{K}^{\alpha}\right] v\left(|x|_{K}\right)
$$

$+c_{\alpha} a\left(|x|_{K}\right) \int_{|y|_{K}<|x|_{K}}\left(|x|_{K}^{\alpha-1}-|y|_{K}^{\alpha-1}\right) v\left(|y|_{K}\right) d y=f\left(|x|_{K}\right), x \neq 0$,
where $c_{\alpha}=\frac{1-q^{-\alpha}}{1-q^{\alpha-1}}$.
Since a is continuous, there exists such $N \in \mathbb{Z}$ that

$$
\left.\left.q^{-\alpha} a\left(|x|_{K}\right)\right|_{x}\right|_{K} ^{\alpha}<1 \quad \text { for }|x|_{K} \leq q^{N} .
$$

On the ball $B_{N}=\left\{x \in K:|x|_{K} \leq q^{N}\right\}$, the equation takes the form

$$
\begin{equation*}
v\left(|x|_{K}\right)+\int_{|y|_{K}<|x|_{K}} k_{\alpha}(x, y) v\left(|y|_{K}\right) d y=F\left(|x|_{K}\right) \tag{3}
\end{equation*}
$$

where for $\alpha \neq 1$,

$$
\begin{aligned}
& k_{\alpha}(x, y)=\left[1+q^{-\alpha} a\left(|x|_{K}\right)|x|_{K}^{\alpha}\right]^{-1} c_{\alpha} a\left(|x|_{K}\right)\left(|x|_{K}^{\alpha-1}-|y|_{K}^{\alpha-1}\right) \\
& (x \neq 0), k_{\alpha}(0, y)=0, F\left(|x|_{K}\right)=\left[1+q^{-\alpha} a\left(|x|_{K}\right)|x|_{K}^{\alpha}\right]^{-1} f\left(|x|_{K}\right) . \\
& \text { If } \alpha=1, \text { then } \\
& k_{1}(x, y)=\frac{1-q}{q \log q}\left[1+q^{-1} a\left(|x|_{K}\right)|x|_{K}\right]^{-1} a\left(|x|_{K}\right)\left(\log |x|_{K}-\log |y|_{K}\right) \\
& (x \neq 0), k_{1}(0, y)=0, F\left(|x|_{K}\right)=\left[1+q^{-1} a\left(|x|_{K}\right)|x|_{K}\right]^{-1} f\left(|x|_{K}\right) .
\end{aligned}
$$

If we construct a solution on B_{N}, and if

$$
\begin{equation*}
a\left(|x|_{K}\right) \neq-q^{\alpha m} \quad \text { for any } x \in K, m \in \mathbb{Z} \tag{4}
\end{equation*}
$$

we will be able to construct a solution successively for all $x \in K$.
Further on, the condition (4) is satisfied.

Theorem 1

For each $\alpha>0$, the integral equation (3) has a unique continuous solution on B_{N}.

The integral operator in (3) is compact on $C\left(B_{N}\right)$ and has no nonzero eigenvalues.

In general, the function $u=I^{\alpha} v$ satisfies (1) in the sense of distributions from Φ^{\prime}. The initial condition (2) is satisfied automatically.
Let us find additional conditions on a and f, under which this construction gives a strong solution of the Cauchy problem (1)-(2). A strong solution is unique in the class of functions $u=I^{\alpha} v$ where v is a continuous radial function, such that $\sum_{l=m}^{\infty}\left|v\left(q^{\prime}\right)\right|<\infty$ for sum $m \in \mathbb{Z}$.

Theorem 2

Suppose that

$$
\left|a\left(|x|_{K}\right)\right| \leq C|x|_{K}^{-\alpha-\varepsilon}, \quad\left|f\left(|x|_{K}\right)\right| \leq C|x|_{K}^{-\varepsilon}, \quad \varepsilon>0, C>0,
$$

as $|x|_{K}>1$. Then $u=I^{\alpha} v$ is a strong solution of the Cauchy problem (4.1)-(4.2).

Instead of (2), one can consider an inhomogeneous initial condition $u(0)=u_{0}, u_{0} \in \mathbb{C}$. Looking for a solution in the form $u=u_{0}+I^{\alpha} v, v=v\left(|x|_{K}\right)$, we obtain the integral equation

$$
v\left(|x|_{K}\right)+a\left(|x|_{K}\right)\left(I^{\alpha} v\right)\left(|x|_{K}\right)=f\left(|x|_{K}\right)-a\left(|x|_{K}\right) u_{0}
$$

which can be studied under the same assumptions.
All the above results carry over to the case of a matrix-valued coefficient $a\left(|x|_{K}\right)$ and vector-valued solutions. In this case, to obtain a strong solution, it is sufficient to demand that the spectrum of each matrix $a\left(|x|_{K}\right), x \in K$, does not intersect the set $\left\{-q^{N}, N \in \mathbb{Z}\right\}$.

