LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Harmonic Analysis for Locally Compact Abelian Groups

Emily J. King

Technische Universität Berlin Unterstürtzt von/Supported by the Alexander von Humboldt Stiftung/Foundation

p-Adic Methods for Modelling of Complex Systems 18 April 2013

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

1 Harmonic Analysis

2 *p*-Adic Shifts

Shift-Invariant Spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

1 Harmonic Analysis

2 *p*-Adic Shifts

Shift-Invariant Spaces

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

LCAG HA

E. J. King

Harmonic Analysis

- p-Adic Shifts
- Shift-Invariant Spaces
- Wiener Inversion

- $f: G \to \mathbb{C}$, G a locally compact abelian group (LCAG)
- Consider $f \mapsto F(y) = \int_G f(x)\psi_y(x)d\mu(x).$
- Especially desirable when $f = \int \left[\int_G f(x) \psi_y(x) d\mu(x) \right] \tilde{\psi}_y d\tilde{\mu}(y)$ (weakly, pointwise, etc.).

LCAG HA

E. J. King

Harmonic Analysis

- p-Adic Shifts
- Shift-Invariant Spaces
- Wiener Inversion

- $f: G \to \mathbb{C}$, G a locally compact abelian group (LCAG)
- Consider $f \mapsto F(y) = \int_G f(x)\psi_y(x)d\mu(x).$
- Especially desirable when $f = \int \left[\int_G f(x) \psi_y(x) d\mu(x) \right] \tilde{\psi}_y d\tilde{\mu}(y)$ (weakly, pointwise, etc.).

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

For example:

• Fourier Analysis: $f \in L^1(G)$, $\psi_{\gamma} = \chi_{\gamma} \in \hat{G}$, $F \in A(\hat{G})$.

LCAG HA

E. J. King

Harmonic Analysis

- p-Adic Shifts
- Shift-Invariant Spaces
- Wiener Inversion

- $f: G \to \mathbb{C}$, G a locally compact abelian group (LCAG)
- Consider $f \mapsto F(y) = \int_G f(x)\psi_y(x)d\mu(x).$
- Especially desirable when $f = \int \left[\int_G f(x)\psi_y(x)d\mu(x)\right]\tilde{\psi}_y d\tilde{\mu}(y)$ (weakly, pointwise, etc.).
- For example:
 - Fourier Analysis: $f \in L^1(G)$, $\psi_{\gamma} = \chi_{\gamma} \in \hat{G}$, $F \in A(\hat{G})$.
 - Time-Frequency Analysis: $f \in L^2(G)$, $\psi_{\gamma,y} = \chi_{\gamma}T_y\phi$, $\chi_{\gamma} \in \hat{G}$, $y \in G$, $T_yh(\cdot) = h(\cdot y)$, $\|\phi\|_{L^2} = 1$, $F(\gamma, y) \in L^2(G \times \hat{G})$. (quantum mechanics, continuous Short-Time Frequency Transform, Gabor-Weyl-Heisenberg)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

LCAG HA

E. J. King

Harmonic Analysis

- p-Adic Shifts
- Shift-Invariant Spaces
- Wiener Inversion

- $f: G \to \mathbb{C}$, G a locally compact abelian group (LCAG)
- Consider $f \mapsto F(y) = \int_G f(x)\psi_y(x)d\mu(x).$
- Especially desirable when $f = \int \left[\int_G f(x)\psi_y(x)d\mu(x)\right]\tilde{\psi}_y d\tilde{\mu}(y)$ (weakly, pointwise, etc.).
- For example:
 - Fourier Analysis: $f \in L^1(G)$, $\psi_{\gamma} = \chi_{\gamma} \in \hat{G}$, $F \in A(\hat{G})$.
 - Time-Frequency Analysis: $f \in L^2(G)$, $\psi_{\gamma,y} = \chi_{\gamma}T_y\phi$, $\chi_{\gamma} \in \hat{G}$, $y \in G$, $T_yh(\cdot) = h(\cdot y)$, $\|\phi\|_{L^2} = 1$, $F(\gamma, y) \in L^2(G \times \hat{G})$. (quantum mechanics, continuous Short-Time Frequency Transform, Gabor-Weyl-Heisenberg)
 - Time-Scale Analysis: $f \in L^2(G)$, $\psi_{a,b} = D_a T_b \phi$, ϕ "nice" in $L^2(G)$, $a \neq 0$, $b \in G$, $D_a h(\cdot) = |a|^{1/2} h(a \cdot)$. (continuous wavelet transform)

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- Discretely indexed systems
- Typically samples of the continuous systems with group-like structure

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- Discretely indexed systems
- Typically samples of the continuous systems with group-like structure

For example

• Dyadic wavelet systems in $L^2(\mathbb{R})$:

$$\mathcal{W}(\psi) = \{ D_{2^k} T_\ell \psi : k \in \mathbb{Z}, \ell \in \mathbb{Z} \}$$

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- Discretely indexed systems
- Typically samples of the continuous systems with group-like structure

For example

• Dyadic wavelet systems in $L^2(\mathbb{R})$:

$$\mathcal{W}(\psi) = \{ D_{2^k} T_\ell \psi : k \in \mathbb{Z}, \ell \in \mathbb{Z} \}$$

- $\ell \mapsto T_{\ell}$ is a representation (the regular representation) of a lattice (discrete group) \mathbb{Z} in \mathbb{R} .
- Shift-invariant systems in $L^2(\mathbb{R})$:

$$\mathcal{S}(\psi) = \{T_{\ell}\psi : \ell \in \mathbb{Z}\}\$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- Discretely indexed systems
- Typically samples of the continuous systems with group-like structure

For example

• Dyadic wavelet systems in $L^2(\mathbb{R})$:

$$\mathcal{W}(\psi) = \{ D_{2^k} T_\ell \psi : k \in \mathbb{Z}, \ell \in \mathbb{Z} \}$$

- $\ell \mapsto T_{\ell}$ is a representation (the regular representation) of a lattice (discrete group) \mathbb{Z} in \mathbb{R} .
- Shift-invariant systems in $L^2(\mathbb{R})$:

$$\mathcal{S}(\psi) = \{T_{\ell}\psi : \ell \in \mathbb{Z}\}\$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion A key question about a "continuously" indexed system $\Psi = \{\psi_y\}$ in a function space ${\bf F}$:

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion A key question about a "continuously" indexed system $\Psi=\{\psi_y\}$ in a function space ${\bf F}:$

Does Ψ yield a resolution of the identity? That is, for all $f \in \mathbf{F}$, does

$$f = \int \left[\int_G f(x) \psi_y(x) d\mu(x) \right] \tilde{\psi}_y d\tilde{\mu}(y)$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

hold weakly (or pointwise, etc.)?

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion A key question about a "continuously" indexed system $\Psi=\{\psi_y\}$ in a function space ${\bf F}$:

Does Ψ yield a resolution of the identity? That is, for all $f \in \mathbf{F}$, does

$$f = \int \left[\int_G f(x) \psi_y(x) d\mu(x) \right] \tilde{\psi}_y d\tilde{\mu}(y)$$

hold weakly (or pointwise, etc.)?

Some key questions about a discretely indexed system $\Psi = \{\psi_i\}_i$ in a function space \mathbf{F} :

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion A key question about a "continuously" indexed system $\Psi=\{\psi_y\}$ in a function space ${\bf F}$:

Does Ψ yield a resolution of the identity? That is, for all $f \in \mathbf{F}$, does

$$f = \int \left[\int_G f(x) \psi_y(x) d\mu(x) \right] \tilde{\psi}_y d\tilde{\mu}(y)$$

hold weakly (or pointwise, etc.)?

Some key questions about a discretely indexed system $\Psi = \{\psi_i\}_i$ in a function space \mathbf{F} :

• Is Ψ an orthonormal basis?

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion A key question about a "continuously" indexed system $\Psi=\{\psi_y\}$ in a function space ${\bf F}:$

Does Ψ yield a resolution of the identity? That is, for all $f \in \mathbf{F}$, does

$$f = \int \left[\int_G f(x) \psi_y(x) d\mu(x) \right] \tilde{\psi}_y d\tilde{\mu}(y)$$

hold weakly (or pointwise, etc.)?

Some key questions about a discretely indexed system $\Psi = \{\psi_i\}_i$ in a function space \mathbf{F} :

- Is Ψ an orthonormal basis?
- Is Ψ a *frame*? That is, do there exist $0 < A \leq B < \infty$ such that for all $f \in \mathcal{H}$ (generalizations possible to Banach spaces),

$$A||f||_{\mathcal{H}}^2 \le \sum |\langle f, \psi_i \rangle|^2 \le B||f||_{\mathcal{H}}^2.$$

• Is Ψ complete in **F** (a normed vector space)? That is, is it dense?

Outline

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Harmonic Analysis

2 *p*-Adic Shifts

3 Shift-Invariant Spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion Consider an LCAG G with a compact open subgroup (e.g., Z^k_p) and no discrete subgroup, like Q^k_p.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

LCAG HA

- E. J. King
- Harmonic Analysis
- p-Adic Shifts
- Shift-Invariant Spaces
- Wiener Inversion

 Consider an LCAG G with a compact open subgroup (e.g., Z^k_p) and no discrete subgroup, like Q^k_p.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• How does one discretely shift functions?

LCAG HA

- E. J. King
- Harmonic Analysis

p-Adic Shifts

- Shift-Invariant Spaces
- Wiener Inversion

- Consider an LCAG G with a compact open subgroup (e.g., Z^k_p) and no discrete subgroup, like Q^k_p.
- How does one discretely shift functions?
- There are two main options.
 - Shifting by a set of coset representatives of $\mathbb{Q}_p^k/\mathbb{Z}_p^k$ (Maria's talk).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

LCAG HA

- E. J. King
- Harmonic Analysis

p-Adic Shifts

- Shift-Invariant Spaces
- Wiener Inversion

- Consider an LCAG G with a compact open subgroup (e.g., Z^k_p) and no discrete subgroup, like Q^k_p.
- How does one discretely shift functions?
- There are two main options.
 - Shifting by a set of coset representatives of $\mathbb{Q}_p^k/\mathbb{Z}_p^k$ (Maria's talk).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

• Something else which has a group structure. (Next slide)

"Benedetto & Benedetto" Shifts – Notation

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- $\bullet~G$ a LCAG, H < G a compact open subgroup.
- The annihilator subgroup of H in \hat{G} is defined to be

$$H^{\perp} = \{ \gamma \in \hat{G} : \forall x \in H, \quad \chi_{\gamma}(x) = 1 \} \subseteq \hat{G},$$

- $\widehat{G/H}\cong H^{\perp}$ and $\hat{H}\cong \hat{G}/H^{\perp}$
- Haar measures normalized so measure of H in G is one, the measure of H^{\perp} in \hat{G} is one, and the measures on G/H and \hat{G}/H^{\perp} are the counting measure.

"Benedetto & Benedetto" Shifts – Definition

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Definition (Benedetto & Benedetto 2004)

Let G be a LCAG with compact open subgroup $H \leq G$. Let $\mathcal{D} \subseteq \hat{G}$ be a set of coset representatives in \hat{G} for the quotient $\hat{H} = \hat{G}/H^{\perp}$.

- Define maps $\theta=\theta_{\mathcal{D}}:\hat{G}\to \mathcal{D}$ and $\eta=\eta_{\mathcal{D}}:\hat{G}\to H^{\perp}\subseteq \hat{G}$ by
 - $\theta(\gamma) =$ the unique $\sigma_{\gamma} \in \mathcal{D}$ such that $\gamma \sigma_{\gamma} \in H^{\perp} \subseteq \hat{G}$,

•
$$\eta(\gamma) = \gamma - \theta(\gamma).$$

- For any fixed $[s] \in G/H$, define
 - the following unimodular (hence L^{∞}) weight function:

$$\omega_{[s]}(\gamma) = \omega_{[s],\mathcal{D}}(\gamma) = \overline{\chi_s(\eta_{\mathcal{D}}(\gamma))},$$

• the multiplier $M_{[s]}$ on $L^2(\hat{G}),$ for any $F\in L^2(\hat{G}),$

$$M_{[s]}F(\gamma) = M_{[s],\mathcal{D}}F(\gamma) = F(\gamma)\omega_{[s],\mathcal{D}}(\gamma)$$
, and

• the shift operator $T_{[s]}f$

$$T_{[s]}f = T_{[s],\mathcal{D}}f = f * \check{\omega}_{[s],\mathcal{D}},$$

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- We'll write \mathbb{Q}_p for both \mathbb{Q}_p and $\hat{\mathbb{Q}}_p$, etc.
- Also $\mathcal D$ is fixed to be

$$I_p = \{\pi_N p^N + \dots + \pi_{-1} p^{-1} : N \in \mathbb{Z}^-, \pi_i \in \{0, \dots, p_1\}\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- We'll write \mathbb{Q}_p for both \mathbb{Q}_p and $\hat{\mathbb{Q}}_p$, etc.
- Also $\mathcal D$ is fixed to be

$$I_p = \{\pi_N p^N + \dots + \pi_{-1} p^{-1} : N \in \mathbb{Z}^-, \pi_i \in \{0, \dots, p_1\}\}.$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Definition

For any fixed
$$[\alpha] \in \mathbb{Q}_p/\mathbb{Z}_p$$
 (with $\alpha \in I_p$), define
• $\omega_{[\alpha]}(\gamma) = e^{2\pi i \{\alpha(\gamma - \{\gamma\}_p)\}_p}$.

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- We'll write \mathbb{Q}_p for both \mathbb{Q}_p and $\hat{\mathbb{Q}}_p$, etc.
- \bullet Also ${\cal D}$ is fixed to be

$$I_p = \{\pi_N p^N + \dots + \pi_{-1} p^{-1} : N \in \mathbb{Z}^-, \pi_i \in \{0, \dots, p_1\}\}.$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Definition

For any fixed
$$[\alpha] \in \mathbb{Q}_p/\mathbb{Z}_p$$
 (with $\alpha \in I_p$), define
• $\omega_{[\alpha]}(\gamma) = e^{2\pi i \{\alpha(\gamma - \{\gamma\}_p)\}_p}$.

•
$$M_{[\alpha]}F(\gamma) = F(\gamma)\omega_{[\alpha]}(\gamma).$$

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- We'll write \mathbb{Q}_p for both \mathbb{Q}_p and $\hat{\mathbb{Q}}_p$, etc.
- Also $\mathcal D$ is fixed to be

$$I_p = \{\pi_N p^N + \dots + \pi_{-1} p^{-1} : N \in \mathbb{Z}^-, \pi_i \in \{0, \dots, p_1\}\}.$$

Definition

For any fixed
$$[\alpha] \in \mathbb{Q}_p/\mathbb{Z}_p$$
 (with $\alpha \in I_p$), define
• $\omega_{[\alpha]}(\gamma) = e^{2\pi i \{\alpha(\gamma - \{\gamma\}_p)\}_p}$.

•
$$M_{[\alpha]}F(\gamma) = F(\gamma)\omega_{[\alpha]}(\gamma).$$

•
$$T_{[\alpha]}f = \left(M_{[\alpha]}\hat{f}\right)^{\vee}$$

Note in particular that the restriction of each $\omega_{[\alpha]}$ to \mathbb{Z}_p is the restriction of the character defined by α to \mathbb{Z} .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion • "Benedetto & Benedetto" shifts $\{T_{[\alpha]} : \alpha \in I_p\}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• Group structure

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion • "Benedetto & Benedetto" shifts $\{T_{[\alpha]} : \alpha \in I_p\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Group structure
- Not a sampling of continuous shifts

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion • "Benedetto & Benedetto" shifts $\{T_{[\alpha]} : \alpha \in I_p\}$

- Group structure
- Not a sampling of continuous shifts
- Can change the measure of the support

Theorem (K. 2013)

For $\beta \in I_p$, $N \in \mathbb{Z}$,

$$\begin{cases} \operatorname{supp} T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + \mathbb{Z}_p & ; \quad N \le 0 \\ \operatorname{supp} T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + p^N \mathbb{Z}_p & ; \quad N > 0 \end{cases}$$

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion • "Benedetto & Benedetto" shifts $\{T_{[\alpha]} : \alpha \in I_p\}$

- Group structure
- Not a sampling of continuous shifts
- Can change the measure of the support

Theorem (K. 2013)

For $\beta \in I_p$, $N \in \mathbb{Z}$,

$$\begin{aligned} & \text{supp } T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + \mathbb{Z}_p & ; \quad N \leq 0 \\ & \text{supp } T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + p^N \mathbb{Z}_p & ; \quad N > 0 \end{aligned}$$

- Coset representative shifts $\{T_{\alpha} : \alpha \in I_p\}$
 - No underlying group structure

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion • "Benedetto & Benedetto" shifts $\{T_{[\alpha]} : \alpha \in I_p\}$

- Group structure
- Not a sampling of continuous shifts
- Can change the measure of the support

Theorem (K. 2013)

For $\beta \in I_p$, $N \in \mathbb{Z}$,

$$\begin{aligned} & \text{supp } T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + \mathbb{Z}_p & ; \quad N \leq 0 \\ & \text{supp } T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + p^N \mathbb{Z}_p & ; \quad N > 0 \end{aligned}$$

- Coset representative shifts $\{T_{\alpha} : \alpha \in I_p\}$
 - No underlying group structure
 - A sampling of continuous shifts

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion • "Benedetto & Benedetto" shifts $\{T_{[\alpha]} : \alpha \in I_p\}$

- Group structure
- Not a sampling of continuous shifts
- Can change the measure of the support

Theorem (K. 2013)

For $\beta \in I_p$, $N \in \mathbb{Z}$,

$$\begin{aligned} & \text{supp } T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + \mathbb{Z}_p & ; \quad N \leq 0 \\ & \text{supp } T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + p^N \mathbb{Z}_p & ; \quad N > 0 \end{aligned}$$

- Coset representative shifts $\{T_{\alpha} : \alpha \in I_p\}$
 - No underlying group structure
 - A sampling of continuous shifts
 - Doesn't change the measure of the support

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion • "Benedetto & Benedetto" shifts $\{T_{[\alpha]} : \alpha \in I_p\}$

- Group structure
- Not a sampling of continuous shifts
- Can change the measure of the support

Theorem (K. 2013)

For $\beta \in I_p$, $N \in \mathbb{Z}$,

$$\sup T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + \mathbb{Z}_p \quad ; \quad N \le 0 \\ \sup T_{[\beta]} \mathbb{1}_{p^N \mathbb{Z}_p} = \beta + p^N \mathbb{Z}_p \quad ; \quad N > 0$$

•

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Coset representative shifts $\{T_{\alpha} : \alpha \in I_p\}$
 - No underlying group structure
 - A sampling of continuous shifts
 - Doesn't change the measure of the support

(Note that both sets of shifts give rise to the same Haar wavelets and generalize ${\mathbb R}$ shifts.)

Outline

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Harmonic Analysis

2 *p*-Adic Shifts

Shift-Invariant Spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Shift-Invariant Spaces

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Definition

A shift-invariant space S is a space of functions over G such that for any $h \in H \subset G$, $f \in S \iff T_h f \in S$. A principal shift-invariant space is a shift-invariant space that may be written for some $\psi \in S$ as

 $\overline{\operatorname{span}}\{T_h\psi:h\in H\}.$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

A translation-invariant space is closed under all shifts $\{T_g : g \in G\}$.

Shift-Invariant Spaces

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Definition

A shift-invariant space S is a space of functions over G such that for any $h \in H \subset G$, $f \in S \iff T_h f \in S$. A principal shift-invariant space is a shift-invariant space that may be written for some $\psi \in S$ as

 $\overline{\operatorname{span}}\{T_h\psi:h\in H\}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

A translation-invariant space is closed under all shifts $\{T_g : g \in G\}$.

• For $G = \mathbb{R}^d$, H is classically \mathbb{Z}^d .

Shift-Invariant Spaces

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Definition

A shift-invariant space S is a space of functions over G such that for any $h \in H \subset G$, $f \in S \iff T_h f \in S$. A principal shift-invariant space is a shift-invariant space that may be written for some $\psi \in S$ as

 $\overline{\operatorname{span}}\{T_h\psi:h\in H\}.$

A translation-invariant space is closed under all shifts $\{T_g : g \in G\}$.

- For $G = \mathbb{R}^d$, H is classically \mathbb{Z}^d .
- Example, Paley-Wiener Space (band-limited functions, canonical ex. of translation invariant):

$$PW(\mathbb{R}) = \{f \in L^2(\mathbb{R}) : \operatorname{supp}(\hat{f}) \subseteq \left[-\frac{1}{2}, \frac{1}{2}\right]\}$$

うして 山口 マルビット 山口 マクト

• Example, V_0 in a multi resolution analysis.

LCAG Bracket [Hernández, Sikic, Weiss, Wilson 2010]

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion (G,+) LCAG, $T:g\to T_g$ unitary representation of G on Hilbert space $\mathcal H$

Definition

A unitary representation T is $\mathit{dual}\ \mathit{integrable}$ if there exists a "bracket"

$$[\cdot, \cdot] : \mathcal{H} \times \mathcal{H} \to L^1(\widehat{G}, d\alpha)$$

s.t. $\forall \varphi, \psi \in \mathcal{H}, \forall g \in G$,

$$\langle \varphi, T_g \psi \rangle_{\mathcal{H}} = \int_{\widehat{G}} [\varphi, \psi](\alpha) \overline{\alpha}(g) d\alpha.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Theorem (Hernández, Sikic, Weiss, Wilson 2010)

If $\psi \in \mathcal{H} \setminus \{0\}$, define $\langle \psi \rangle = \overline{\{T_g \psi\}_{g \in G}}^{\mathcal{H}}$. • If $\varphi, \psi \in \mathcal{H} \setminus \{0\}$, then $\langle \varphi \rangle \perp \langle \psi \rangle \iff [\varphi, \psi](\alpha) = 0$ a.e. $\alpha \in \hat{G}$.

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Theorem (Hernández, Sikic, Weiss, Wilson 2010)

If $\psi \in \mathcal{H} \setminus \{0\}$, define $\langle \psi \rangle = \overline{\{T_g \psi\}_{g \in G}}^{\mathcal{H}}$.

• If $\varphi, \psi \in \mathcal{H} \setminus \{0\}$, then $\langle \varphi \rangle \perp \langle \psi \rangle \iff [\varphi, \psi](\alpha) = 0$ a.e. $\alpha \in \hat{G}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• If $\psi \in \mathcal{H} \setminus \{0\}$, then $\{T_g \psi\}_{g \in G}$ is an o.n.b. of $\langle \psi \rangle \iff [\varphi, \psi](\alpha) = 1$ a.e. $\alpha \in \hat{G}$.

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Theorem (Hernández, Sikic, Weiss, Wilson 2010)

If $\psi \in \mathcal{H} \setminus \{0\}$, define $\langle \psi \rangle = \overline{\{T_g \psi\}_{g \in G}}^{\mathcal{H}}$.

- If $\varphi, \psi \in \mathcal{H} \setminus \{0\}$, then $\langle \varphi \rangle \perp \langle \psi \rangle \iff [\varphi, \psi](\alpha) = 0$ a.e. $\alpha \in \hat{G}$.
- If $\psi \in \mathcal{H} \setminus \{0\}$, then $\{T_g\psi\}_{g \in G}$ is an o.n.b. of $\langle \psi \rangle \iff [\varphi, \psi](\alpha) = 1$ a.e. $\alpha \in \hat{G}$.
- If ψ ∈ H \{0}, then {T_gψ}_{g∈G} is a Riesz basis of ⟨ψ⟩ with constants A, B ⇔ A ≤ [φ, ψ](α) ≤ B a.e. α ∈ Ĝ.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Theorem (Hernández, Sikic, Weiss, Wilson 2010)

If $\psi \in \mathcal{H} \setminus \{0\}$, define $\langle \psi \rangle = \overline{\{T_g \psi\}_{g \in G}}^{\mathcal{H}}$.

- If $\varphi, \psi \in \mathcal{H} \setminus \{0\}$, then $\langle \varphi \rangle \perp \langle \psi \rangle \iff [\varphi, \psi](\alpha) = 0$ a.e. $\alpha \in \hat{G}$.
- If $\psi \in \mathcal{H} \setminus \{0\}$, then $\{T_g \psi\}_{g \in G}$ is an o.n.b. of $\langle \psi \rangle \iff [\varphi, \psi](\alpha) = 1$ a.e. $\alpha \in \hat{G}$.
- If $\psi \in \mathcal{H} \setminus \{0\}$, then $\{T_g \psi\}_{g \in G}$ is a Riesz basis of $\langle \psi \rangle$ with constants $A, B \iff A \leq [\varphi, \psi](\alpha) \leq B$ a.e. $\alpha \in \hat{G}$.
- If $\psi \in \mathcal{H} \setminus \{0\}$, then $\{T_g \psi\}_{g \in G}$ is a frame of $\langle \psi \rangle$ with constants $A, B \iff A \leq [\varphi, \psi](\alpha) \leq B$ a.e. $\alpha \in \Omega_{\psi}$, where $\Omega_{\psi} = \{\alpha \in \widehat{G} : [\psi, \psi](\alpha) > 0\}.$

Prüfer Group Shift-Invariant Systems

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Proposition (K. 2013)

Let $\Psi : \mathbb{Q}_p / \mathbb{Z}_p \to U(L^2(\mathbb{Q}_p))$ be defined as $\Psi([\alpha]) = T_{[a]}$. This is a unitary representation. Further, this representation is dual integrable with bracket $[\cdot, \cdot] : L^2(\mathbb{Q}_p) \times L^2(\mathbb{Q}_p) \to L^1(\mathbb{Z}_p)$ mapping

$$[\varphi, \psi](\xi) = \sum_{\beta \in I_p} \hat{\varphi}(\xi + \beta) \overline{\hat{\psi}(\xi + \beta)}.$$

Prüfer Group Shift-Invariant Systems

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Proposition (K. 2013)

Let $\Psi : \mathbb{Q}_p / \mathbb{Z}_p \to U(L^2(\mathbb{Q}_p))$ be defined as $\Psi([\alpha]) = T_{[a]}$. This is a unitary representation. Further, this representation is dual integrable with bracket $[\cdot, \cdot] : L^2(\mathbb{Q}_p) \times L^2(\mathbb{Q}_p) \to L^1(\mathbb{Z}_p)$ mapping

$$[\varphi, \psi](\xi) = \sum_{\beta \in I_p} \hat{\varphi}(\xi + \beta) \overline{\hat{\psi}(\xi + \beta)}.$$

• The results of [Ahmadi, Hemmat, and Tousi 2011] overlap this some, but the paper isn't rigorous.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Prüfer Group Shift-Invariant Systems

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Proposition (K. 2013)

Let $\Psi : \mathbb{Q}_p / \mathbb{Z}_p \to U(L^2(\mathbb{Q}_p))$ be defined as $\Psi([\alpha]) = T_{[a]}$. This is a unitary representation. Further, this representation is dual integrable with bracket $[\cdot, \cdot] : L^2(\mathbb{Q}_p) \times L^2(\mathbb{Q}_p) \to L^1(\mathbb{Z}_p)$ mapping

$$[\varphi, \psi](\xi) = \sum_{\beta \in I_p} \hat{\varphi}(\xi + \beta) \overline{\hat{\psi}(\xi + \beta)}.$$

• The results of [Ahmadi, Hemmat, and Tousi 2011] overlap this some, but the paper isn't rigorous.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

• At this point not clear if the bracket can be generalized to "classical" shifts.

Outline

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Harmonic Analysis

2 *p*-Adic Shifts

3 Shift-Invariant Spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Classical Wiener Inversion

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Theorem (Wiener 1933)

If $F \in A(\mathbb{T})$ vanishes nowhere then $\frac{1}{F} \in A(\mathbb{T})$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Classical Wiener Inversion

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Theorem (Wiener 1933)

If $F \in A(\mathbb{T})$ vanishes nowhere then $\frac{1}{F} \in A(\mathbb{T})$.

A Wiener-type inversion theorem is one of the form:

If c is an object in a class C equipped with multiplication and if c is invertible, then $c^{-1} \in C$.

Classical Wiener Inversion

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Theorem (Wiener 1933)

If $F \in A(\mathbb{T})$ vanishes nowhere then $\frac{1}{F} \in A(\mathbb{T})$.

A *Wiener-type inversion theorem* is one of the form:

If c is an object in a class C equipped with multiplication and if c is invertible, then $c^{-1} \in C$.

Theorem (Sjöstrand 1994 & 1995)

If K_{σ} is a pseudodifferential operator with (Weyl or Kohn-Nirenberg) symbol $\sigma \in M^{\infty,1}(\mathbb{R}^{2d})$ and if K_{σ} is invertible with respect to composition of operators on $L^{2}(\mathbb{R}^{d})$, then $K_{\sigma}^{-1} = K_{\tau}$ for some $\tau \in M^{\infty,1}(\mathbb{R}^{2d})$.

Wiener-Type Inversion for ΨDO over LCAG

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Theorem (Gröchenig and Strohmer 2007)

Let ν be an admissible weight. If $\sigma \in M^{\infty,1}_{\nu \circ \mathcal{J}^{-1}}(G \times \hat{G})$ and if K_{σ} is invertible on $L^2(G)$, then $(K_{\sigma})^{-1} = K_{\tau}$ for some $\tau \in M^{\infty,1}_{\nu \circ \mathcal{J}^{-1}}(G \times \hat{G})$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Wiener-Type Inversion for ΨDO over LCAG

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Theorem (Gröchenig and Strohmer 2007)

Let ν be an admissible weight. If $\sigma \in M^{\infty,1}_{\nu \circ \mathcal{J}^{-1}}(G \times \hat{G})$ and if K_{σ} is invertible on $L^2(G)$, then $(K_{\sigma})^{-1} = K_{\tau}$ for some $\tau \in M^{\infty,1}_{\nu \circ \mathcal{J}^{-1}}(G \times \hat{G})$.

The proof uses methods from time-frequency analysis rather than hard analysis techniques. They also generalize a result of [Baskakov 1990] about invertible matrices with ℓ^1 -bounded diagonals.

うして ふゆう ふほう ふほう うらう

LCAG HA	Over \mathbb{R}^d , the normalized Gaussian defined by $arphi\left(x ight)=e^{-\pi x\cdot x}$,
E. J. King	
Harmonic Analysis	
p-Adic Shifts	
Shift-Invariant Spaces	
Wiener Inversion	

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion Over \mathbb{R}^d , the normalized Gaussian defined by $\varphi(x) = e^{-\pi x \cdot x}$, • is a "fixed point" of the Fourier transform, ($\mathbb{R}^d \cong \hat{\mathbb{R}}^d$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion Over \mathbb{R}^d , the normalized Gaussian defined by $\varphi\left(x\right)=e^{-\pi x\cdot x}$,

• is a "fixed point" of the Fourier transform, $(\mathbb{R}^d\cong\hat{\mathbb{R}}^d)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• squares pointwise to obtain another Gaussian, and

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion Over \mathbb{R}^d , the normalized Gaussian defined by $\varphi\left(x\right)=e^{-\pi x\cdot x}$,

• is a "fixed point" of the Fourier transform, $(\mathbb{R}^d\cong\hat{\mathbb{R}}^d)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- squares pointwise to obtain another Gaussian, and
- convolves with self to obtain another Gaussian.

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion Over \mathbb{R}^d , the normalized Gaussian defined by $\varphi\left(x\right)=e^{-\pi x\cdot x}$,

- is a "fixed point" of the Fourier transform, $(\mathbb{R}^d\cong\hat{\mathbb{R}}^d)$
- squares pointwise to obtain another Gaussian, and
- convolves with self to obtain another Gaussian.

Fact: Every LCAG G may be factorized as $\mathbb{R}^d \times G_0$, where G_0 contains a compact open subgroup K.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion Over $\mathbb{R}^d,$ the normalized Gaussian defined by $\varphi\left(x\right)=e^{-\pi x\cdot x},$

- is a "fixed point" of the Fourier transform, $(\mathbb{R}^d\cong\hat{\mathbb{R}}^d)$
- squares pointwise to obtain another Gaussian, and
- convolves with self to obtain another Gaussian.

Fact: Every LCAG G may be factorized as $\mathbb{R}^d \times G_0$, where G_0 contains a compact open subgroup K.

Definition

For $G \cong \mathbb{R}^d \times G_0$, we define the *Gaussian* φ , over $(x_1, x_2) \in \mathbb{R}^d \times G_0$ to be

$$\varphi\left(x_{1}, x_{2}\right) = \varphi_{1}\left(x_{1}\right) \mathbb{1}_{K}\left(x_{2}\right),$$

ション ふゆ く 山 マ チャット しょうくしゃ

where φ_1 is the normalized Gaussian over \mathbb{R}^d .

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion Over $\mathbb{R}^{d},$ the normalized Gaussian defined by $\varphi\left(x\right)=e^{-\pi x\cdot x}$,

- is a "fixed point" of the Fourier transform, $(\mathbb{R}^d\cong\hat{\mathbb{R}}^d)$
- squares pointwise to obtain another Gaussian, and
- convolves with self to obtain another Gaussian.

Fact: Every LCAG G may be factorized as $\mathbb{R}^d \times G_0$, where G_0 contains a compact open subgroup K.

Definition

For $G \cong \mathbb{R}^d \times G_0$, we define the *Gaussian* φ , over $(x_1, x_2) \in \mathbb{R}^d \times G_0$ to be

$$\varphi\left(x_{1}, x_{2}\right) = \varphi_{1}\left(x_{1}\right) \mathbb{1}_{K}\left(x_{2}\right),$$

where φ_1 is the normalized Gaussian over \mathbb{R}^d .

Example: Over \mathbb{Q}_p ,

$$\mathbb{1}_{\mathbb{Z}_p} = \mathbb{1}_{\mathbb{Z}_p}^2 = \hat{\mathbb{1}}_{\mathbb{Z}_p} = \mathbb{1}_{\mathbb{Z}_p} * \mathbb{1}_{\mathbb{Z}_p}$$

ション ふゆ く 山 マ チャット しょうくしゃ

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion • Still a lot of interesting questions about harmonic analysis on LCAG.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- Still a lot of interesting questions about harmonic analysis on LCAG.
- Tools from harmonic analysis can be used to approach many problems.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- Still a lot of interesting questions about harmonic analysis on LCAG.
- Tools from harmonic analysis can be used to approach many problems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• What so the transform spaces really tell us?

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- Still a lot of interesting questions about harmonic analysis on LCAG.
- Tools from harmonic analysis can be used to approach many problems.
- What so the transform spaces really tell us?
- Thinking about T_{α} and $T_{[\alpha]}$ can sometimes help. (E.g., "square root" MRA expressed geometrically.)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- Still a lot of interesting questions about harmonic analysis on LCAG.
- Tools from harmonic analysis can be used to approach many problems.
- What so the transform spaces really tell us?
- Thinking about T_{α} and $T_{[\alpha]}$ can sometimes help. (E.g., "square root" MRA expressed geometrically.)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

• Zak-transform-like bracket for T_{α} ?

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

- Still a lot of interesting questions about harmonic analysis on LCAG.
- Tools from harmonic analysis can be used to approach many problems.
- What so the transform spaces really tell us?
- Thinking about T_{α} and $T_{[\alpha]}$ can sometimes help. (E.g., "square root" MRA expressed geometrically.)
- Zak-transform-like bracket for T_{α} ?
- A fuller exploration of "continuous" systems (some preliminary work done) including extended metaplectic representation?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Thanks!

LCAG HA

E. J. King

Harmonic Analysis

p-Adic Shifts

Shift-Invariant Spaces

Wiener Inversion

Thanks!

Большое спасибо!

< <p>I

Danke schön!