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Harmonic o C0n5|der f — F fG d'u( )

Analysis
e Especially de5|rab|e when f = f UG 2y (x)du(z)] Yydii(y)
(weakly, pointwise, etc.).

For example:
o Fourier Analysis: f € LY(G), 1, = x5 € G, F € A(Q).

o Time-Frequency Analysis: f € L2(G), ¢,y = x+Ty®, X~ € G,
y € G, Tyh(:) =h(-—y), |9z =1, F(v,y) € L*(G x G).
(quantum mechanics, continuous Short-Time Frequency
Transform, Gabor-Weyl-Heisenberg)

o Time-Scale Analysis: f € L*(G), Yap = DaTp9, ¢ “nice" in
L*(G), a#0,b€ G, Dyh(-) = |a\1/2h( -). (continuous wavelet
transform)
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LCAG HA A key question about a “continuously” indexed system ¥ = {1, } in a
E. J. King function space F:
Does VU yield a resolution of the identity? That is, for all f € F, does

= { [ @ e)into)| dydity)

hold weakly (or pointwise, etc.)?
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Some key questions about a discretely indexed system ¥ = {¢;}; in a
function space F:

@ Is ¥ an orthonormal basis?

o Is U a frame? That is, do there exist 0 < A < B < oo such that
for all f € H (generalizations possible to Banach spaces),

Allf1I5, < ZI Fo)? < BIfIG,-

o Is ¥ complete in F (a normed vector space)? That is, is it
dense?
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p-Adic Shifts

o Consider an LCAG G with a compact open subgroup (e.g., ZF)
and no discrete subgroup, like QJ.

@ How does one discretely shift functions?

@ There are two main options.
o Shifting by a set of coset representatives of @’;/Z’; (Maria's

talk).
o Something else which has a group structure. (Next slide)
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@ G a LCAG, H < G a compact open subgroup.

p-Adic Shifts

o The annihilator subgroup of H in G is defined to be
HY={yeG:VzeH, x,(z)=1}CQaG,

° CT/T{%HJ— and H~G/H*
@ Haar measures normalized so measure of H in G is one, the

measure of H+ in G is one, and the measures on G/H and
G/H* are the counting measure.
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Let G be a LCAG with compact open subgroup H < G. Let D C G
be a set of coset representatives in G for the quotient H = G/H™'.
@ Definemaps # =0p: G - Dand n=1np: G— H- C G by
o O(7) = the unique o, € D such that y — o, € H C G,
° n(7) =v—-0(7)
o For any fixed [s] € G/H, define

o the following unimodular (hence L°°) weight function:

p-Adic Shifts

wis (7) = wis, (1) = X (10(7)),
o the multiplier M, on L*(G), for any F € L*(Q),
Mg F(y) = Mg pF(v) = F(y)wgs)p(7), and

o the shift operator i, f

Tiqf = Tig,pf = [ *©s,0,
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o We'll write Q,, for both @, and Q,, etc.

@ Also D is fixed to be
e S L={anp" +--+m_1p ' :NeZ ,m €{0,...,p1}}.

Definition

For any fixed [o] € Q,/Z, (with o € I,,), define
) w[a] (fy) = eQWi{a(W_{’Y}p)}p'

o My F(v) = F(7)wia)(7)-
° T[a]f = <M[a]f) °

Note in particular that the restriction of each wy,) to Z, is the
restriction of the character defined by a to Z.
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30 o “Benedetto & Benedetto” shifts {7}, : a € I}
o Group structure

e Not a sampling of continuous shifts

p-Adic Shifts o Can change the measure of the support

Theorem (K. 2013)

Forpel, N €Z,

{ supp Tigl,ng, = B+ Zp ; N<O0
supp Tigl,nz, = B+p"Zy 5 N >0

o Coset representative shifts {T,, : o € I,,}
e No underlying group structure
o A sampling of continuous shifts
o Doesn't change the measure of the support

(Note that both sets of shifts give rise to the same Haar wavelets and
generalize R shifts.)
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Definition
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A shift-invariant space S is a space of functions over G such that for

anyhe HCG, feS < Tyf €S. A principal shift-invariant
space is a shift-invariant space that may be written for some 1) € S as

Shift-Invariant

Spaces span{Tp : h € H}.

A translation-invariant space is closed under all shifts {T}, : g € G}.

e For G =R, H is classically Z4.

e Example, Paley-Wiener Space (band-limited functions, canonical
ex. of translation invariant):

PWR) = {f € L) s sunl) < | -5, 3])

o Example, V4 in a multi resolution analysis.
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(G,+) LCAG, T : g — T, unitary representation of G on Hilbert
space H

Shift-Invariant
Spaces

Definition

A unitary representation T is dual integrable if there exists a
“bracket" R
[]:H xH— LG, da)

s.t. Y, € H,Vg € G,

(@, Tygth)u Z/é[w,z/)](a)a(g)da.
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Theorem (Hernandez, Sikic, Weiss, Wilson 2010)

If i € H\{0}, define (1) = Ty }gec -
Shift Invariant o If p,vp € H\{0}, then (p) L (¢) <= [p,¢¥](a) =0 a.e.
a €.

o If¢ € H\{0}, then {Tyt)}4ecc is an o.n.b. of
(V) <= lp,Yl(a) =1ae acd.

o If{ € H\{0}, then {Ty1)}4cc is a Riesz basis of (1) with
constants A,B <= A< [p,¢](a) < B ae acG.

o Ifip € H\{0}, then {T 1} 4ec is a frame of (1) with constants
A B <= A< [p,Y](a) < B a.e o€ Qy, where

Qyp={ac G : [, ¥](a) > 0}.
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Proposition (K. 2013)

Let U : Q,/Z, — U(L*(Q,)) be defined as ¥([a]) = T},). Thisis a
Shift-Invariant unitary representation. Further, this representation is dual integrable
Spaces with bracket [-,-] : L*(Q,) x L?(Q,) — L*(Z,) mapping

e, 1(6) = Y (& + BYb(E + ).

BeI,

@ The results of [Ahmadi, Hemmat, and Tousi 2011] overlap this
some, but the paper isn't rigorous.

@ At this point not clear if the bracket can be generalized to
“classical” shifts.
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Classical Wiener Inversion

Theorem (Wiener 1933)

If F € A(T) vanishes nowhere then + € A (T).

A Wiener-type inversion theorem is one of the form:

If ¢ is an object in a class C equipped with multiplication
and if ¢ is invertible, then ¢! € C.

Theorem (Sjéstrand 1994 & 1995)

If K, is a pseudodifferential operator with (Weyl or Kohn-Nirenberg)
symbol o € M°>' (R*?) and if K, is invertible with respect to
composition of operators on L* (R?), then K;' = K, for some

T € M1 (R*?).
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Theorem (Gréchenig and Strohmer 2007)
Let v be an admissible weight. If o0 € M°}_ (G x G) and if K, is

—1
Wiener voJ

ot invertible on L2 (G), then (K,) ' = K, for some

TeMZ, (GxG).
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Theorem (Gréchenig and Strohmer 2007)
Let v be an admissible weight. If o0 € M°}_ (G x G) and if K, is

iener voJ 1
Inverson invertible on L? (G), then (K,)~ ' = K, for some
T E Mf;’:;,l(G x G).

The proof uses methods from time-frequency analysis rather than
hard analysis techniques. They also generalize a result of [Baskakov
1990] about invertible matrices with ¢/!-bounded diagonals.
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E. J. King @ is a “fixed point” of the Fourier transform, (Rd & R )

@ squares pointwise to obtain another Gaussian, and

@ convolves with self to obtain another Gaussian.
Fact: Every LCAG G may be factorized as R% x G, where Gy
contains a compact open subgroup K.

Wiener

Definition

Inversion

For G 2 R? x Gy, we define the Gaussian p, over
(71,22) € RY x G to be

¢ (z1,22) = 1 (71) Lk (72),

where ¢ is the normalized Gaussian over R?.



Generalized Gaussians

LCAG HA Over R?, the normalized Gaussian defined by o (x e TET,

E. J. King @ is a “fixed point” of the Fourier transform, (Rd & R )

@ squares pointwise to obtain another Gaussian, and

@ convolves with self to obtain another Gaussian.
Fact: Every LCAG G may be factorized as R% x G, where Gy
contains a compact open subgroup K.

Wiener

Definition

Inversion

For G 2 R? x Gy, we define the Gaussian p, over
(71,22) € RY x G to be

¢ (z1,22) = @1 (1) 1 (22)
where ¢ is the normalized Gaussian over R?.

Example: Over Qy,
]]‘Zp = ]].%p = ﬂzp = ILZP * ILZP-
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Still a lot of interesting questions about harmonic analysis on
LCAG.

@ Tools from harmonic analysis can be used to approach many
Wiener problems.

Inversion

@ What so the transform spaces really tell us?

o Thinking about T,, and T}, can sometimes help. (E.g., “square
root” MRA expressed geometrically.)

@ Zak-transform-like bracket for T,,7

@ A fuller exploration of “continuous" systems (some preliminary
work done) — including extended metaplectic representation?
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