Toward the ergodicity of p－adic 1－Lipschitz functions represented by the van der Put series

Sangtae Jeong

Department of Mathematics
Inha University
stj＠inha．ac．kr

International Workshop on p－adic Methods at Bielefeld Univ．

2013．04． 15

Outline

(1) Goal of the Talk
(2) Brief introduction to non-Archimedean dynamical systems
(3) Summary on known results for ergodicity of maps on R
(4) Ergodicdity of 1 - Lipschitz functions on \mathbb{Z}_{p}
(5) Some equivalent statements
(6) Alternative proofs of Anashin-Khrennikov-Yurova results

In this talk,

- Provide the sufficient conditions for the ergodicity of a 1-Lipschitz fucntion $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ represented by the van der Put series.
- Provide alternative proofs of two criteria for an ergodic 1-Lipschitz function on \mathbb{Z}_{2}, represented by (a) the Mahler basis (due to Anashin)
(b) the van der Put basis (due to Anashin, Khrennikov and Yurova)
- Give a characterization for the ergodicity of a polynomial over \mathbb{Z}_{2} in term of its coefficients(if time permits).

Preliminaries to non-Archimedean dynamical systems

- Non-Archimedean dynamical system is made up of a triple (R, f, μ) where
R : a measurable space $\left(R=\mathbb{Z}_{p}\right.$ or $\left.\mathbb{F}_{q}[[T]]\right)$
f : a measurable function $f: R \rightarrow R$
μ : a normalized measure on R so that
$\mu(R)=1 ; \mu\left(a+\pi^{k} R\right)=1 / q^{k}, q=\# R /(\pi)$.
- It has many applications to mathematical physics, computer science, cryptography, and so on. In particular, it can be applied to pseudo-random numbers in cryptography.
- Measure-preserving and ergodic functions on R :
(1) A mapping $f: R \rightarrow R$ is measure-preserving if $\mu\left(f^{-1}(M)\right)=\mu(M)$ for each measurable subset $M \subset R$.
(2) A measure-preserving $f: R \rightarrow R$ is called ergodic if it has no proper invariant subsets, i.e.,if any measurable subset $M \subset R$ with $f^{-1}(M)=M$ implies that $\mu(M)=1$ or $\mu(M)=0$.

Equivalent statements for 1-Lipschitz functions

$\left(R, \pi,|?|_{\pi}\right)=\left(\mathbb{Z}_{p}, p,|?|_{p}\right)$ or $\left(\mathbb{F}_{q}[[T]], T,|?|_{T}\right)$

- $f: R \rightarrow R$ is 1-Lipschitz (or compatible) if one of the equivalent statements is satisfied:
(1) $|f(x)-f(y)|_{\pi} \leq|x-y|_{\pi}$ for all $x, y \in R$;
(2) $|f(x+y)-f(x)|_{\pi} \leq|y|_{\pi}$ for all $x, y \in R$;
(3) $\left|\Phi_{1} f(x, y):=\frac{1}{y}(f(x+y)-f(x))\right| \pi \leq 1$ for all $x \in R$ and all $y \neq 0 \in R$;
(4) $\left\|\Phi_{1} f(x, y)\right\|_{\text {sup }} \leq 1$ for all $y \neq 0 \in R$;
(5) $f\left(x+\pi^{n} R\right) \subset f(x)+\pi^{n} R$ for all $x \in R$ and any integer $n \geq 1$;
(6) $f(x) \equiv f(y)\left(\bmod \pi^{n}\right)$ whenever $x \equiv y\left(\bmod \pi^{n}\right)$ for any integer $n \geq 1$.
- Then, a 1-Lipschitz function induces a (reduced) function $f_{/ n}: R / \pi^{n} R \rightarrow R / \pi^{n} R$ for all integers $n \geq 1$.

Equivalent statements and Problems

Equivalent statements for measure-preserving and ergodic functions
(1) A 1-Lipschitz function $f: R \rightarrow R$ is measure-preserving \Leftrightarrow its reduced function $f_{/ n}: R / \pi^{n} R \rightarrow R / \pi^{n} R$ is bijective for all integers $n \geq 1$.
$\Leftrightarrow f$ is an isometry; $|f(x)-f(y)|_{\pi}=|x-y|_{\pi}$ for all $x, y \in R$.
(2) A 1-Lipschitz function $f: R \rightarrow R$ is ergodic if and only if its reduced function $f_{/ n}: R / \pi^{n} R \rightarrow R / \pi^{n} R$ is transitive for all integers $n \geq 1$. (\bullet transitive $=$ forming a cycle by repeating f)

Problems to be tackled:

To characterize 3 types of
ergodic) functions f on R, in terms of coefficients $\left\{a_{n}\right\}_{n>0}$ of f
written as

where e_{n} is a well behaved orthonormal basis for $C(R, K)$, the

Equivalent statements and Problems

Equivalent statements for measure-preserving and ergodic functions

(1) A 1-Lipschitz function $f: R \rightarrow R$ is measure-preserving \Leftrightarrow its reduced function $f_{/ n}: R / \pi^{n} R \rightarrow R / \pi^{n} R$ is bijective for all integers $n \geq 1$.
$\Leftrightarrow f$ is an isometry; $|f(x)-f(y)|_{\pi}=|x-y|_{\pi}$ for all $x, y \in R$.
(2) A 1-Lipschitz function $f: R \rightarrow R$ is ergodic if and only if its reduced function $f_{/ n}: R / \pi^{n} R \rightarrow R / \pi^{n} R$ is transitive for all integers $n \geq 1$. (\bullet transitive $=$ forming a cycle by repeating f)

Problems to be tackled:

To characterize 3 types of (1-Lipschitz, measure-preserving, ergodic) functions f on R, in terms of coefficients $\left\{a_{n}\right\}_{n \geq 0}$ of f written as

$$
f(x)=\sum_{n=0}^{\infty} a_{n} e_{n}(x)
$$

where e_{n} is a well behaved orthonormal basis for $C(R, K)$, the space of continuous functions on R.

Summary on known results for ergodicity of 1-Lipschitz maps on R

For a 1-Lipschitz map $f: R \rightarrow R$ written as

$$
f(x)=\sum_{n=0}^{\infty} a_{n} e_{n}(x)
$$

where e_{n} is an orthonormal basis of $C(R, K)$, we have characterization results for ergodicity on R in the following cases:

- Known results for ergodicity of 1-Lipschitz maps on R :

R	bases $e_{n}(x)$	discoverers
\mathbb{Z}_{2}	Mahler basis	Anashin
\mathbb{Z}_{2}	Van der Put basis	Ana., Khrennikov and Yurova
$\mathbb{F}_{2}[[T]]$	Analog of Van der Put	Lin, Shi and Yang
$\mathbb{F}_{2}[[T]]$	Carlitz-Wagner basis	Lin, Shi and Yang
$\mathbb{F}_{2}[[T]]$	digit derivatives basis	Jeong
$\mathbb{F}_{2}[[T]]$	digit shift operators basis	Jeong

Ergodicity of f on \mathbb{Z}_{2} with respect to Mahler basis

Theorem(Anashin)
A 1-Lipschitz function

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\binom{x}{n}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}
$$

is ergodic whenever the following conditions are satisfied:
(1) $a_{0} \not \equiv 0(\bmod p)$.
(2)

$$
a_{1} \equiv\left\{\begin{array}{lll}
1 & (\bmod p) & \text { if } p>2 \\
1 & (\bmod 4) & \text { if } p=2
\end{array}\right.
$$

(3) $a_{n} \equiv 0\left(\bmod p^{\left\lfloor\log _{p} n\right\rfloor+1}\right)$ for all $n \geq 2$.

Moreover, in the case $p=2$ these conditions are necessary.

Useful criteria for ergodicity and measure-preservation

Corollary(Anashin)
(a) Every 1-Lipschitz function $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is ergodic if and only if it is of the form

$$
f(x)=1+x+2 \Delta g(x)
$$

for a suitable constant $d \in \mathbb{Z}_{2}$ and a suitable1-Lipschitz function $g: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$.
(b) Every 1-Lipschitz function $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is measure-preserving if and only if it is of the form $f(x)=d+x+2 g(x)$ for a suitable constant $d \in \mathbb{Z}_{2}$ and a suitable1-Lipschitz function $g: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$.

For later use, we have the following.
Lemma(Anashin)
Given a 1-Lipschitz function $g: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ and a p-adic integer $d \not \equiv 0(\bmod p)$, the function $f(x)=d+x+p \Delta g(x)$ is ergodic.

Van der Put basis

- The van der Put basis $\chi(m, x)$ on \mathbb{Z}_{p}. For an integer $m>0$ and $x \in \mathbb{Z}_{p}$, we define

$$
\chi(m, x)= \begin{cases}1 & \text { if }|x-m| \leq p^{-\left\lfloor\log _{p}(m)\right\rfloor-1} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\chi(0, x)= \begin{cases}1 & \text { if }|x| \leq p^{-1} \\ 0 & \text { otherwise }\end{cases}
$$

- For an positive integer $m=m_{0}+m_{1} p+\cdots+m_{s} p^{s}\left(m_{s} \neq 0\right)$,

$$
q(m)=m_{s} p^{s} ; \quad m_{-}:=m-q(m)
$$

- Theorem(Van der Put)

Any continuous function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is uniquely represented as $f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x)$.
The expansion coefficients $\left\{B_{m}\right\}_{m \geq 0}$ can be recovered by

$$
B_{m}= \begin{cases}f(m)-f\left(m_{-}\right) & \text {if } m \geq p \\ f(m) & \text { otherwise }\end{cases}
$$

Ergodicity of f on \mathbb{Z}_{2} with respect to van der Put basis

Theorem(Anashin, Khrennikov and Yurova)
A 1- Lipschitz function $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ represented as

$$
f(x)=b_{0} \chi(0, x)+\sum_{n=1}^{\infty} 2^{\left\lfloor\log _{2} n\right\rfloor} b_{n} \chi(n, x)
$$

with $b_{n} \in \mathbb{Z}_{2}$, is ergodic if and only if the following conditions are satisfied:
(1) $b_{0} \equiv 1(\bmod 2)$;
(2) $b_{0}+b_{1} \equiv 3(\bmod 4)$;
(3) $b_{2}+b_{3} \equiv 2(\bmod 4)$;
(4) $\left|b_{n}\right|=1$ for all $n \geq 2$;
(5) $\sum_{i=2^{n-1}}^{2^{n}-1} b_{i} \equiv 0(\bmod 4)$ for all $n \geq 3$.

Measure-preservation of f on \mathbb{Z}_{p} with respect to van der Put basis

Theorem(Khrennikov and Yurova)

Let $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a 1- Lipschitz function represented as

$$
f(x)=\sum_{m=0}^{\infty} p^{\left\lfloor\log _{\rho} m\right\rfloor} b_{m} \chi(m, x)
$$

Then f is measure-preserving if and only if
(1) $\left\{b_{0}, b_{1}, \cdots, b_{p-1}\right\}$ is distinct modulo p;
(2) For any integer $k \geq 1, b_{m+p^{k}}, b_{m+2 p^{k}}, \cdots, b_{m+(p-1) p^{k}}$ are nonzero residues modulo p for all $m=0, \cdots p^{k}-1$.

From now on, use the notation for $m \geq 0$,

$$
B_{m}=p^{\left\lfloor\log _{p} m\right\rfloor} b_{m}
$$

Main Results: Ergodicdity of 1- Lipschitz functions on \mathbb{Z}_{p}

- Anashin's results using Mahler basis \Rightarrow Anashin-Khrennikov-Yurova results using van der Put basis.
- Strategy for main results- Going backward:

Anashin- Khrennikov-Yurova results using van der Put basis \Rightarrow Anashin's results using Mahler basis.
-Provide the sufficient conditions for ergodicity of 1- Lipschitz functions on \mathbb{Z}_{p}, thereby obtaining a generalization of AKY results. -Give simple, alternate proofs of two results, especially Anashin's results for Mahler basis. Because his results rely on a criteria based on the algebraic normal form of Boolean functions which determines the measure-preservation and ergodicity of 1-Lipschitz functions.

Main Results: Ergodicdity of 1- Lipschitz functions on \mathbb{Z}_{p}

Theorem A (J)
Let $f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a measure-preserving 1-Lipschitz function of the form $f(x)=d+\varepsilon x+p \Delta g(x)$ for a suitable 1 -Lipschitz function $g(x)$, where $\varepsilon \equiv 1(\bmod p)$ and $d \not \equiv 0(\bmod p)$. Then (i) the function f is ergodic.
(ii) We have the following congruence relations:
(1) $B_{0} \equiv s(\bmod p)$ for some $0<s<p$;
(2) $\sum_{m=0}^{p-1} B_{m} \equiv p s+\frac{1}{2}(p-1) p\left(\bmod p^{2}\right)$;
(3)

$$
\sum_{m=p}^{p^{2}-1} B_{m} \equiv \frac{1}{2}(p-1) p^{3} \equiv\left\{\begin{array}{lll}
4 & \left(\bmod 2^{3}\right) & \text { if } p=2 \\
0 & \left(\bmod p^{3}\right) & \text { if } p>2
\end{array}\right.
$$

(4) $B_{m} \equiv q(m)\left(\bmod p^{\left\lfloor\log _{p} m\right\rfloor+1}\right)$ for all $m \geq p$;
(5) $\sum_{m=p^{n-1}}^{p^{n}-1} B_{m} \equiv 0\left(\bmod p^{n+1}\right)$ for all $n \geq 3$.

Theorem B(J)

Let $f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a 1 -Lipschitz function. Then f is ergodic if f satisfies the following conditions:
(0) $B_{m} \equiv B_{0}+m(\bmod p)$ for $0<m<p$; (additional condition)
(1) $B_{0} \equiv s(\bmod p)$ for some $0<s<p$;
(2) $\sum_{m=0}^{p-1} B_{m} \equiv p s+\frac{1}{2}(p-1) p\left(\bmod p^{2}\right)$;
(3)

$$
\sum_{m=p}^{p^{2}-1} B_{m} \equiv \frac{1}{2}(p-1) p^{3} \equiv\left\{\begin{array}{lll}
4 & \left(\bmod 2^{3}\right) & \text { if } p=2 \\
0 & \left(\bmod p^{3}\right) & \text { if } p>2
\end{array}\right.
$$

(4) $B_{m} \equiv q(m)\left(\bmod p^{\left\lfloor\log _{p} m\right\rfloor+1}\right)$ for all $m \geq p$;
(5) $\sum_{m=p^{n-1}}^{p^{n}-1} B_{m} \equiv 0\left(\bmod p^{n+1}\right)$ for all $n \geq 3$.

Measure preservation of 1- Lipschitz functions on \mathbb{Z}_{p}

To sketch a proof, we need to go through several lemmas; Lemma 1

The 1- Lipschitz function $f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is measure-preserving whenever the following conditions are satisfied:
(1) $\left\{B_{0}, B_{1}, \cdots, B_{p-1}\right\}$ is distinct modulo p;
(2) $B_{m} \equiv q(m)\left(\bmod p^{\left\lfloor\log _{p} m\right\rfloor+1}\right)$ for all $m \geq p$.

Lemma 2
Let $f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a measure-preserving 1- Lipschitz function. Then we have the following:
(1) $\left\{B_{0}, B_{1}, \cdots, B_{p-1}\right\}$ is distinct modulo p.
(2) $\left|B_{m}\right|=|q(m)|=|p|^{\left\lfloor\log _{p} m\right\rfloor}$ for all $m \geq p$

Congruence formula of measure－preserving 1－Lipschitz functions on \mathbb{Z}_{p}

Lemma 3

Let $f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a measure－preserving 1－Lipschitz function．For $p^{n-1} \leq m \leq p^{n}-1(n \geq 2)$ ，set

$$
B_{m}=p^{n-1} b_{m}=p^{n-1}\left(b_{m 0}+b_{m 1} p+\cdots\right)
$$

where

$$
\left(b_{m 0} \neq 0,0 \leq b_{m i} \leq p-1, i=0,1 \cdots\right)
$$

Then，for all $n \geq 2$ ，we have

$$
\sum_{m=p^{n-1}}^{p^{n}-1} B_{m} \equiv \frac{1}{2}(p-1) p^{2 n-1}+T_{n} p^{n} \quad\left(\bmod p^{n+1}\right)
$$

where T_{n} is defined by $T_{n}=\sum_{m=p^{n-1}}^{p^{n}-1} b_{m 1}$ ．

Conditions for $f=\Delta g$

Lemma 4

If a 1-Lipschitz fun. $f=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p_{\tilde{p}}}$ is of the form $f(x)=\Delta g(x)$ for some 1-Lip. fun. $g=\sum_{m=0}^{\infty} \tilde{B}_{m} \chi(m, x)$,

$$
\begin{aligned}
B_{m}= & \tilde{B}_{m+1}-\tilde{B}_{m} \quad \text { if } 0 \leq m \leq p-2 ; \\
= & \tilde{B}_{p}+\tilde{B}_{0}-\tilde{B}_{p-1} \quad \text { if } m=p-1 ; \\
= & \tilde{B}_{m+1}-\tilde{B}_{m} \text { if } m \neq p^{n-1}-1+m_{n-1} p^{n-1}, \\
& \quad p^{n-1} \leq m \leq p^{n}-1, n \geq 2 ; \\
= & \tilde{B}_{m+1}-\tilde{B}_{m}-\tilde{B}_{p^{n-1}} \text { if } m=p^{n-1}-1+m_{n-1} p^{n-1}, \\
& 1 \leq m_{n-1} \leq p-1, n \geq 2 .
\end{aligned}
$$

Lemma 5

Let $f=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a 1-Lipschitz function satisfying (1) $\sum_{m=0}^{p-1} B_{m} \equiv 0(\bmod p)$;
(2) $\sum_{m=p^{n-1}}^{p^{n}-1} B_{m} \equiv 0\left(\bmod p^{n}\right)$ for all $n \geq 2$. Then there exists a 1-Lipschitz function $g(x)$ such that $f(x)=\Delta g(x)$.

Proof of Main Results

Sketch of proof:

(i) Use Anashin's lemma: Every 1- Lipschitz function f of the form $f=B_{0}+x+p \Delta g(x)$ with some 1-Lipschitz function $g(x)$ is ergodic.
(ii) Using conditions (0)-(1)-(4) and

$$
B_{0}=\sum_{m=0}^{p-1} B_{0} \chi(m, x) ; \quad x=\sum_{m=1}^{p-1} m \chi(m, x)+\sum_{m \geq p} q(m) \chi(m, x)
$$

Decompose f into a function of the form

$$
f=B_{0}+x+p \sum_{m \geq 0} B_{m}^{\prime \prime} \chi(m, x)
$$

(iii) Condition (2) is equivalent to $\sum_{m=0}^{p-1} B_{m}^{\prime \prime} \equiv 0(\bmod p)$ conditions (5) and (3) are equivalent to $\sum_{m=p^{n-1}}^{p^{n}-1} B_{m}^{\prime \prime} \equiv 0$ $\left(\bmod p^{n}\right)$ for all $n \geq 2$. By Lemma 5 , we have the desired result. Remark. When p is 2 , it reduces to $A K Y$ results.

Some equivalent statements

Lemma 6

Let $f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a 1-Lipschitz function represented by the van der Put series. Then, for all $n \geq 2$, we have

$$
\sum_{m=p^{n-1}}^{p^{n}-1} B_{m}=\sum_{m=0}^{p^{n}-1} f(m)-p \sum_{m=0}^{p^{n-1}-1} f(m)
$$

From this point onward, we assume that $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is a measure-preserving 1-Lipschitz function. For a nonnegative integer m, write

$$
f(m)=\sum_{i=0}^{\infty} f_{m i} p^{i} \text { with } 0 \leq f_{m i} \leq p-1(i=0,1, \cdots)
$$

For an integer $n \geq 1$, we define S_{n} to be

$$
S_{n}=\sum_{m=0}^{p^{n}-1} f_{m n} .
$$

Some equivalent statements

Lemma 6 gives

$$
\sum_{m=p^{n-1}}^{p^{n}-1} B_{m} \equiv 0\left(\bmod p^{n+1}\right) \Leftrightarrow \sum_{m=0}^{p^{n}-1} f(m) \equiv p \sum_{m=0}^{p^{n-1}-1} f(m)\left(\bmod p^{n+1}\right)
$$

RHS gives the following congruence:

$$
S_{n} \equiv\left\{\begin{array}{lll}
S_{n-1} & (\bmod p) & (n \geq 2) \text { if } p \neq 2 \\
S_{n-1} & (\bmod 2) & (n \geq 3) \text { if } p=2
\end{array}\right.
$$

By Lemma 6 again for all $n \geq 2$, we have

$$
T_{n} \equiv S_{n}-S_{n-1} \quad(\bmod p)
$$

Lemma 3 gives

$$
\sum_{m=p^{n-1}}^{p^{n}-1} B_{m} \equiv \frac{1}{2}(p-1) p^{2 n-1}+T_{n} p^{n}\left(\bmod p^{n+1}\right)
$$

Some equivalent statements

Theorem C

Let $f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be a mp 1-Lipschitz function and let T_{n} and S_{n} be defined as before. Then
(1) $n=2:(a) p=2: \sum_{m=2}^{2^{2}-1} B_{m} \equiv 4\left(\bmod 2^{3}\right)$

$$
\Leftrightarrow S_{2} \equiv S_{1} \quad(\bmod 2) \Leftrightarrow T_{2} \equiv 0 \quad(\bmod 2) ;
$$

or $\sum_{m=2}^{2^{2}-1} B_{m} \equiv 0\left(\bmod 2^{3}\right)$

$$
\Leftrightarrow S_{2} \equiv S_{1}+1 \quad(\bmod 2) \Leftrightarrow T_{2} \equiv 1 \quad(\bmod 2)
$$

(b) $p>2: \sum_{m=p}^{p^{2}-1} B_{m} \equiv r p^{2}\left(\bmod p^{3}\right)$

$$
\Leftrightarrow S_{2} \equiv S_{1}+r \quad(\bmod p) \Leftrightarrow T_{2} \equiv r \quad(\bmod p)
$$

(2) $n \geq 3$ and any prime $p: \quad \sum_{m=p^{n-1}}^{p^{n}-1} B_{m} \equiv r p^{n}\left(\bmod p^{n+1}\right)$

$$
\Leftrightarrow S_{n} \equiv S_{n-1}+r \quad(\bmod p) \Leftrightarrow T_{n} \equiv r \quad(\bmod p)
$$

Alternative proofs of Anashin-Khrennikov-Yurova results

The following lemma is very crucial, which is an analog in \mathbb{Z}_{2} of the result(Lin, Shi and Yang) for the formal power series ring $\mathbb{F}_{2}[[T]]$ over the field \mathbb{F}_{2} of two elements.

Lemma 7

Let $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ be a measure-preserving 1-Lipschitz function such that f is transitive modulo $2^{n}, n \geq 1$. Then f is transitive modulo 2^{n+1} if and only if S_{n} is odd, where S_{n} is defined by

$$
S_{n}=\sum_{m=0}^{p^{n}-1} f_{m n} ; \quad f(m)=\sum_{i=0}^{\infty} f_{m i} p^{i}
$$

By Lemma 7 and Theorem C we reprove the AKY result. Corollary 1

Let $f(x)=\sum_{m=0}^{\infty} B_{m} \chi(m, x): \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ be a 1-Lipschitz function. Then f is ergodic if and only if all conditions in AKY's Theorem are satisfied.

Alternative proofs of Anashin-Khrennikov-Yurova results

By Corollary 1 we reprove the Anashin's result.

Corollary 2

Let $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ be a 1-Lipschitz function. Then, (1) f is measure-preserving if and only if f is of the form $f(x)=d+x+2 g(x)$ for some 2-adic integer $d \in \mathbb{Z}_{2}$ and some 1-Lipschitz function $g(x)$.
(2) f is ergodic if and only if f is of the form $f(x)=1+x+2 \Delta g(x)$ for some 1-Lipschitz function $g(x)$.

By Corollary 2 we reprove the Anashin's result.
Corollary 3
Let $f(x)=\sum_{m=0}^{\infty} a_{m}\binom{x}{m}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ be a 1-Lipschitz function. Then f is ergodic if and only if all conditions in Anashin's Theorem are satisfied.

An application: Ergodicity of polynomials over \mathbb{Z}_{2}

- To provide a characterization for the ergodicity of a polynomial over \mathbb{Z}_{2} in term of its coefficients. For simplicity, we take a polynomial $f \in \mathbb{Z}_{2}[x]$ with $f(0)=1$:

$$
f=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+1 .
$$

Then we set

$$
A_{0}=\sum_{i \equiv 0} a_{(\bmod 2), i>0}, \quad A_{1}=\sum_{i \equiv 1} a_{(\bmod 2)}
$$

Theorem(Larin, Durand and Paccaut)
The polynomial f is ergodic over \mathbb{Z}_{2} if and only if the following conditions are simultaneously satisfied:

$$
\begin{aligned}
a_{1} & \equiv 1(\bmod 2) ; \\
A_{1} & \equiv 1(\bmod 2) ; \\
A_{0}+A_{1} & \equiv 1(\bmod 4) ; \\
a_{1}+2 a_{2}+A_{1} & \equiv 2(\bmod 4) .
\end{aligned}
$$

Future Work

(1) For a general prime $p>2$, try to provide characterization results for $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ to be ergodic.
(2) Problem (raised by Anashin): Try to develop the theory for $\mathbb{F}_{q}[[t]]$ analogous to Anashin's theory on derivatives modulo p^{k} on \mathbb{Z}_{p}

Future Work

(1) For a general prime $p>2$, try to provide characterization results for $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ to be ergodic.
(2) Problem (raised by Anashin): Try to develop the theory for $\mathbb{F}_{q}[[t]]$ analogous to Anashin's theory on derivatives modulo p^{k} on \mathbb{Z}_{p}

Thank you for your attention !!!

