Toward the ergodicity of *p*-adic 1-Lipschitz functions represented by the van der Put series

Sangtae Jeong

Department of Mathematics Inha University stj@inha.ac.kr

International Workshop on *p*-adic Methods at Bielefeld Univ.

2013. 04. 15

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

- 2 Brief introduction to non-Archimedean dynamical systems
- 3 Summary on known results for ergodicity of maps on R
- 4 Ergodicdity of 1- Lipschitz functions on \mathbb{Z}_p
- 5 Some equivalent statements
- 6 Alternative proofs of Anashin-Khrennikov-Yurova results

In this talk,

• Provide the sufficient conditions for the ergodicity of a 1-Lipschitz fucntion $f : \mathbb{Z}_p \to \mathbb{Z}_p$ represented by the van der Put series.

Provide alternative proofs of two criteria for an ergodic 1-Lipschitz function on Z₂, represented by
(a) the Mahler basis (due to Anashin)
(b) the van der Put basis (due to Anashin, Khrennikov and Yurova)

• Give a characterization for the ergodicity of a polynomial over \mathbb{Z}_2 in term of its coefficients(if time permits).

- \bullet Non-Archimedean dynamical system is made up of a triple (R,f,μ) where
- *R*: a measurable space ($R = \mathbb{Z}_p$ or $\mathbb{F}_q[[T]]$)
- f: a measurable function $f : R \to R$
- μ : a normalized measure on R so that

$$\mu(R) = 1; \mu(a + \pi^k R) = 1/q^k, \ q = \#R/(\pi).$$

• It has many applications to mathematical physics, computer science, cryptography, and so on. In particular, it can be applied to pseudo-random numbers in cryptography.

- Measure-preserving and ergodic functions on R:
- (1) A mapping $f : R \rightarrow R$ is measure-preserving if

 $\mu(f^{-1}(M)) = \mu(M)$ for each measurable subset $M \subset R$.

(2) A measure-preserving $f : R \to R$ is called ergodic if it has no proper invariant subsets, i.e., if any measurable subset $M \subset R$ with $f^{-1}(M) = M$ implies that $\mu(M) = 1$ or $\mu(M) = 0$.

 $(R, \pi, |?|_{\pi}) = (\mathbb{Z}_p, p, |?|_p) \text{ or } (\mathbb{F}_q[[T]], T, |?|_T)$

• $f : R \rightarrow R$ is 1-Lipschitz (or compatible) if one of the equivalent statements is satisfied:

(1) $|f(x) - f(y)|_{\pi} \le |x - y|_{\pi}$ for all $x, y \in R$; (2) $|f(x + y) - f(x)|_{\pi} \le |y|_{\pi}$ for all $x, y \in R$; (3) $|\Phi_1 f(x, y) := \frac{1}{y} (f(x + y) - f(x))|_{\pi} \le 1$ for all $x \in R$ and all $y \ne 0 \in R$; (4) $||\Phi_1 f(x, y)||_{\sup} \le 1$ for all $y \ne 0 \in R$; (5) $f(x + \pi^n R) \subset f(x) + \pi^n R$ for all $x \in R$ and any integer $n \ge 1$; (6) $f(x) \equiv f(y) \pmod{\pi^n}$ whenever $x \equiv y \pmod{\pi^n}$ for any integer $n \ge 1$.

• Then, a 1-Lipschitz function induces a (reduced) function $f_{/n}: R/\pi^n R \to R/\pi^n R$ for all integers $n \ge 1$.

Equivalent statements and Problems

Equivalent statements for measure-preserving and ergodic functions

(1) A 1-Lipschitz function $f : R \to R$ is measure-preserving \Leftrightarrow its reduced function $f_{/n} : R/\pi^n R \to R/\pi^n R$ is bijective for all integers $n \ge 1$.

 $\Leftrightarrow f$ is an isometry; $|f(x) - f(y)|_{\pi} = |x - y|_{\pi}$ for all $x, y \in R$. (2) A 1-Lipschitz function $f : R \to R$ is ergodic if and only if its reduced function $f_{/n} : R/\pi^n R \to R/\pi^n R$ is transitive for all integers $n \ge 1$. (• transitive = forming a cycle by repeating f)

Problems to be tackled:

To characterize 3 types of (1-Lipschitz, measure-preserving, ergodic) functions f on R, in terms of coefficients $\{a_n\}_{n\geq 0}$ of f written as

$$f(x) = \sum_{n=0}^{\infty} a_n e_n(x)$$

where e_n is a well behaved orthonormal basis for C(R, K), the space of continuous functions on R.

Equivalent statements and Problems

Equivalent statements for measure-preserving and ergodic functions

(1) A 1-Lipschitz function $f : R \to R$ is measure-preserving \Leftrightarrow its reduced function $f_{/n} : R/\pi^n R \to R/\pi^n R$ is bijective for all integers $n \ge 1$.

 $\Leftrightarrow f$ is an isometry; $|f(x) - f(y)|_{\pi} = |x - y|_{\pi}$ for all $x, y \in R$. (2) A 1-Lipschitz function $f : R \to R$ is ergodic if and only if its reduced function $f_{/n} : R/\pi^n R \to R/\pi^n R$ is transitive for all integers $n \ge 1$. (• transitive = forming a cycle by repeating f)

Problems to be tackled:

To characterize 3 types of (1-Lipschitz, measure-preserving, ergodic) functions f on R, in terms of coefficients $\{a_n\}_{n\geq 0}$ of f written as

$$f(x) = \sum_{n=0}^{\infty} a_n e_n(x)$$

596

where e_n is a well behaved orthonormal basis for C(R, K), the space of continuous functions on R.

Summary on known results for ergodicity of 1-Lipschitz maps on ${\cal R}$

For a 1-Lipschitz map $f : R \rightarrow R$ written as

$$f(x) = \sum_{n=0}^{\infty} a_n e_n(x)$$

where e_n is an orthonormal basis of C(R, K), we have

characterization results for ergodicity on R in the following cases :

• Known results for ergodicity of 1-Lipschitz maps on R :

R	bases $e_n(x)$	discoverers
\mathbb{Z}_2	Mahler basis	Anashin
\mathbb{Z}_2	Van der Put basis	Ana., Khrennikov and Yurova
$\mathbb{F}_2[[T]]$	Analog of Van der Put	Lin, Shi and Yang
$\mathbb{F}_2[[T]]$	Carlitz-Wagner basis	Lin, Shi and Yang
$\mathbb{F}_2[[T]]$	digit derivatives basis	Jeong
$\mathbb{F}_2[[T]]$	digit shift operators basis	Jeong

Ergodicity of f on \mathbb{Z}_2 with respect to Mahler basis

Theorem(Anashin)

A 1-Lipschitz function

$$f(x) = \sum_{n=0}^{\infty} a_n \binom{x}{n} : \mathbb{Z}_p \to \mathbb{Z}_p$$

is ergodic whenever the following conditions are satisfied:
(1) a₀ ≠ 0 (mod p).
(2)

$$a_1 \equiv \begin{cases} 1 \pmod{p} & \text{if } p > 2; \\ 1 \pmod{4} & \text{if } p = 2. \end{cases}$$

(3) $a_n \equiv 0 \pmod{p^{\lfloor \log_p n \rfloor + 1}}$ for all $n \ge 2$. Moreover, in the case p = 2 these conditions are necessary.

Corollary(Anashin)

(a) Every 1-Lipschitz function $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ is ergodic if and only if it is of the form

$$f(x) = 1 + x + 2\Delta g(x)$$

for a suitable constant $d \in \mathbb{Z}_2$ and a suitable1-Lipschitz function $g : \mathbb{Z}_2 \to \mathbb{Z}_2$. (b) Every 1-Lipschitz function $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ is measure-preserving if and only if it is of the form f(x) = d + x + 2g(x) for a suitable constant $d \in \mathbb{Z}_2$ and a suitable1-Lipschitz function $g : \mathbb{Z}_2 \to \mathbb{Z}_2$.

For later use, we have the following. **Lemma**(Anashin)

Given a 1-Lipschitz function $g : \mathbb{Z}_p \to \mathbb{Z}_p$ and a *p*-adic integer $d \neq 0 \pmod{p}$, the function $f(x) = d + x + p\Delta g(x)$ is ergodic.

Van der Put basis

• The van der Put basis $\chi(m, x)$ on \mathbb{Z}_p . For an integer m > 0 and $x \in \mathbb{Z}_p$, we define

$$\chi(m,x) = \begin{cases} 1 & \text{if } |x-m| \le p^{-\lfloor \log_p(m) \rfloor - 1}; \\ 0 & \text{otherwise} \end{cases}$$

and

$$\chi(0,x) = \begin{cases} 1 & \text{if } |x| \le p^{-1}; \\ 0 & \text{otherwise.} \end{cases}$$

• For an positive integer $m = m_0 + m_1 p + \dots + m_s p^s (m_s \neq 0)$,

$$q(m) = m_s p^s; \quad m_{\perp} := m - q(m)$$

• Theorem(Van der Put)

Any continuous function $f : \mathbb{Z}_p \to \mathbb{Z}_p$ is uniquely represented as $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x)$. The expansion coefficients $\{B_m\}_{m \ge 0}$ can be recovered by

$$B_m = \begin{cases} f(m) - f(m_{-}) & \text{if } m \ge p; \\ f(m) & \text{otherwise.} \end{cases}$$

□→ 《注》 《注》 注:

Ergodicity of f on \mathbb{Z}_2 with respect to van der Put basis

Theorem(Anashin, Khrennikov and Yurova)

A 1- Lipschitz function $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ represented as

$$f(x) = b_0 \chi(0, x) + \sum_{n=1}^{\infty} 2^{\lfloor \log_2 n \rfloor} b_n \chi(n, x)$$

with $b_n \in \mathbb{Z}_2$, is ergodic if and only if the following conditions are satisfied:

(1)
$$b_0 \equiv 1 \pmod{2}$$
;
(2) $b_0 + b_1 \equiv 3 \pmod{4}$;
(3) $b_2 + b_3 \equiv 2 \pmod{4}$;
(4) $|b_n| = 1 \text{ for all } n \ge 2$;
(5) $\sum_{i=2^{n-1}}^{2^n-1} b_i \equiv 0 \pmod{4}$ for all $n \ge 3$.

Measure-preservation of f on \mathbb{Z}_p with respect to van der Put basis

Theorem(Khrennikov and Yurova)

Let $f : \mathbb{Z}_p \to \mathbb{Z}_p$ be a 1- Lipschitz function represented as

$$f(x) = \sum_{m=0}^{\infty} p^{\lfloor \log_p m \rfloor} b_m \chi(m, x).$$

Then f is measure-preserving if and only if (1) $\{b_0, b_1, \dots, b_{p-1}\}$ is distinct modulo p; (2) For any integer $k \ge 1$, $b_{m+p^k}, b_{m+2p^k}, \dots, b_{m+(p-1)p^k}$ are nonzero residues modulo p for all $m = 0, \dots p^k - 1$.

From now on, use the notation for $m \ge 0$,

$$B_m = p^{\lfloor \log_p m \rfloor} b_m$$

• Anashin's results using Mahler basis \Rightarrow Anashin-Khrennikov-Yurova results using van der Put basis.

Strategy for main results- Going backward:
 Anashin- Khrennikov-Yurova results using van der Put basis ⇒
 Anashin's results using Mahler basis.

-Provide the sufficient conditions for ergodicity of 1- Lipschitz functions on \mathbb{Z}_p , thereby obtaining a generalization of AKY results. -Give simple, alternate proofs of two results, especially Anashin's results for Mahler basis. Because his results rely on a criteria based on the algebraic normal form of Boolean functions which determines the measure-preservation and ergodicity of 1-Lipschitz functions.

Main Results: Ergodicdity of 1- Lipschitz functions on \mathbb{Z}_p

Theorem A (J)

Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a measure-preserving 1-Lipschitz function of the form $f(x) = d + \varepsilon x + p\Delta g(x)$ for a suitable 1-Lipschitz function g(x), where $\varepsilon \equiv 1 \pmod{p}$ and $d \not\equiv 0 \pmod{p}$. Then (i) the function f is ergodic. (ii) We have the following congruence relations: (1) $B_0 \equiv s \pmod{p}$ for some 0 < s < p; (2) $\sum_{m=0}^{p-1} B_m \equiv ps + \frac{1}{2}(p-1)p \pmod{p^2}$; (3)

$$\sum_{m=p}^{p^2-1} B_m \equiv \frac{1}{2}(p-1)p^3 \equiv \begin{cases} 4 \pmod{2^3} & \text{if } p=2; \\ 0 \pmod{p^3} & \text{if } p>2; \end{cases}$$

(4)
$$B_m \equiv q(m) \pmod{p^{\lfloor \log_p m \rfloor + 1}}$$
 for all $m \ge p$;
(5) $\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv 0 \pmod{p^{n+1}}$ for all $n \ge 3$.

Main Results: Ergodic
dity of $p\mbox{-}adic$ 1- Lipschitz functions on
 \mathbb{Z}_p

Theorem B(J)

Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a 1-Lipschitz function. Then f is ergodic if f satisfies the following conditions: (0) $B_m \equiv B_0 + m \pmod{p}$ for 0 < m < p; (additional condition) (1) $B_0 \equiv s \pmod{p}$ for some 0 < s < p; (2) $\sum_{m=0}^{p-1} B_m \equiv ps + \frac{1}{2}(p-1)p \pmod{p^2}$; (3)

$$\sum_{m=p}^{p^2-1} B_m \equiv \frac{1}{2}(p-1)p^3 \equiv \begin{cases} 4 \pmod{2^3} & \text{if } p=2; \\ 0 \pmod{p^3} & \text{if } p>2; \end{cases}$$

(4)
$$B_m \equiv q(m) \pmod{p^{\lfloor \log_p m \rfloor + 1}}$$
 for all $m \ge p$;
(5) $\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv 0 \pmod{p^{n+1}}$ for all $n \ge 3$.

To sketch a proof, we need to go through several lemmas; $\ensuremath{\textit{Lemma 1}}$

The 1- Lipschitz function $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ is measure-preserving whenever the following conditions are satisfied: (1) $\{B_0, B_1, \dots, B_{p-1}\}$ is distinct modulo p; (2) $B_m \equiv q(m) \pmod{p^{\lfloor \log_p m \rfloor + 1}}$ for all $m \ge p$.

Lemma 2

Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a measure-preserving 1- Lipschitz function. Then we have the following: (1) $\{B_0, B_1, \dots, B_{p-1}\}$ is distinct modulo p. (2) $|B_m| = |q(m)| = |p|^{\lfloor \log_p m \rfloor}$ for all $m \ge p$

Congruence formula of measure-preserving 1- Lipschitz functions on \mathbb{Z}_p

Lemma 3

Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a measure-preserving 1- Lipschitz function. For $p^{n-1} \le m \le p^n - 1$ $(n \ge 2)$, set

$$B_m = p^{n-1}b_m = p^{n-1}(b_{m0} + b_{m1}p + \cdots),$$

where

$$(b_{m0} \neq 0, 0 \leq b_{mi} \leq p-1, i = 0, 1 \cdots).$$

Then, for all $n \ge 2$, we have

$$\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv \frac{1}{2}(p-1)p^{2n-1} + T_n p^n \pmod{p^{n+1}},$$

where T_n is defined by $T_n = \sum_{m=p^{n-1}}^{p^n-1} b_{m1}$.

Conditions for $f = \Delta g$

Lemma 4

If a 1-Lipschitz fun.
$$f = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$$
 is of the form $f(x) = \Delta g(x)$ for some 1-Lip. fun. $g = \sum_{m=0}^{\infty} \tilde{B}_m \chi(m, x)$,

$$\begin{array}{rcl} B_{m} & = & \tilde{B}_{m+1} - \tilde{B}_{m} & \text{if } 0 \leq m \leq p-2; \\ & = & \tilde{B}_{p} + \tilde{B}_{0} - \tilde{B}_{p-1} & \text{if } m = p-1; \\ & = & \tilde{B}_{m+1} - \tilde{B}_{m} & \text{if } m \neq p^{n-1} - 1 + m_{n-1}p^{n-1}, \\ & & p^{n-1} \leq m \leq p^{n} - 1, n \geq 2; \\ & = & \tilde{B}_{m+1} - \tilde{B}_{m} - \tilde{B}_{p^{n-1}} & \text{if } m = p^{n-1} - 1 + m_{n-1}p^{n-1}, \\ & & 1 \leq m_{n-1} \leq p-1, n \geq 2. \end{array}$$

Lemma 5

Let $f = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a 1-Lipschitz function satisfying (1) $\sum_{m=0}^{p-1} B_m \equiv 0 \pmod{p}$; (2) $\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv 0 \pmod{p^n}$ for all $n \ge 2$. Then there exists a 1-Lipschitz function g(x) such that $f(x) = \Delta g(x)$.

Proof of Main Results

Sketch of proof:

(i) Use Anashin's lemma: Every 1- Lipschitz function f of the form $f = B_0 + x + p\Delta g(x)$ with some 1-Lipschitz function g(x) is ergodic.

(ii) Using conditions (0)-(1)-(4) and

$$B_0 = \sum_{m=0}^{p-1} B_0 \chi(m, x); \ \ x = \sum_{m=1}^{p-1} m \chi(m, x) + \sum_{m \ge p} q(m) \chi(m, x),$$

Decompose f into a function of the form

$$f = B_0 + x + p \sum_{m \ge 0} B''_m \chi(m, x).$$

(iii) Condition (2) is equivalent to $\sum_{m=0}^{p-1} B''_m \equiv 0 \pmod{p}$ conditions (5) and (3) are equivalent to $\sum_{m=p^{n-1}}^{p^n-1} B''_m \equiv 0 \pmod{p^n}$ for all $n \ge 2$. By Lemma 5, we have the desired result. **Remark.** When p is 2, it reduces to AKY results

Some equivalent statements

Lemma 6

Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$ be a 1-Lipschitz function represented by the van der Put series. Then, for all $n \ge 2$, we have

$$\sum_{m=p^{n-1}}^{p^n-1} B_m = \sum_{m=0}^{p^n-1} f(m) - p \sum_{m=0}^{p^{n-1}-1} f(m).$$

From this point onward, we assume that $f : \mathbb{Z}_p \to \mathbb{Z}_p$ is a measure-preserving 1-Lipschitz function. For a nonnegative integer m, write

$$f(m) = \sum_{i=0}^{\infty} f_{mi} p^i \text{ with } 0 \leq f_{mi} \leq p-1 \ (i=0,1,\cdots)$$

For an integer $n \ge 1$, we define S_n to be

$$S_n = \sum_{m=0}^{p^n-1} f_{mn}.$$

Some equivalent statements

Lemma 6 gives

$$\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv 0 \pmod{p^{n+1}} \Leftrightarrow \sum_{m=0}^{p^n-1} f(m) \equiv p \sum_{m=0}^{p^{n-1}-1} f(m) \pmod{p^{n+1}}.$$

RHS gives the following congruence:

$$S_n \equiv \begin{cases} S_{n-1} \pmod{p} & (n \ge 2) \text{ if } p \ne 2; \\ S_{n-1} \pmod{2} & (n \ge 3) \text{ if } p = 2. \end{cases}$$

By Lemma 6 again for all $n \ge 2$, we have

$$T_n \equiv S_n - S_{n-1} \pmod{p}.$$

Lemma 3 gives

$$\sum_{m=p^{n-1}}^{p^n-1} B_m \equiv \frac{1}{2}(p-1)p^{2n-1} + T_n p^n \pmod{p^{n+1}}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Some equivalent statements

Theorem C

Let
$$f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_p \to \mathbb{Z}_p$$
 be a mp 1-Lipschitz
function and let T_n and S_n be defined as before. Then
 $(1)n = 2 : (a) \ p = 2 : \sum_{m=2}^{2^2-1} B_m \equiv 4 \pmod{2^3}$
 $\Leftrightarrow S_2 \equiv S_1 \pmod{2} \Leftrightarrow T_2 \equiv 0 \pmod{2^3}$
or $\sum_{m=2}^{2^2-1} B_m \equiv 0 \pmod{2^3}$
 $\Leftrightarrow S_2 \equiv S_1 + 1 \pmod{2} \Leftrightarrow T_2 \equiv 1 \pmod{2}$.
(b) $p > 2 : \sum_{m=p}^{p^2-1} B_m \equiv rp^2 \pmod{p^3}$
 $\Leftrightarrow S_2 \equiv S_1 + r \pmod{p} \Leftrightarrow T_2 \equiv r \pmod{p}$.
(2) $n \ge 3$ and any prime $p: \sum_{m=p^{n-1}}^{p^n-1} B_m \equiv rp^n \pmod{p^{n+1}}$
 $\Leftrightarrow S_n \equiv S_{n-1} + r \pmod{p} \Leftrightarrow T_n \equiv r \pmod{p}$.

Alternative proofs of Anashin-Khrennikov-Yurova results

The following lemma is very crucial, which is an analog in \mathbb{Z}_2 of the result(Lin, Shi and Yang) for the formal power series ring $\mathbb{F}_2[[T]]$ over the field \mathbb{F}_2 of two elements. Lemma 7

Let $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ be a measure-preserving 1-Lipschitz function such that f is transitive modulo 2^n , $n \ge 1$. Then f is transitive modulo 2^{n+1} if and only if S_n is odd, where S_n is defined by

$$S_n = \sum_{m=0}^{p^n-1} f_{mn}; \quad f(m) = \sum_{i=0}^{\infty} f_{mi} p^i.$$

By Lemma 7 and Theorem C we reprove the AKY result. Corollary ${\bf 1}$

Let $f(x) = \sum_{m=0}^{\infty} B_m \chi(m, x) : \mathbb{Z}_2 \to \mathbb{Z}_2$ be a 1-Lipschitz function. Then f is ergodic if and only if all conditions in AKY's Theorem are satisfied.

< □ > < 4

Alternative proofs of Anashin-Khrennikov-Yurova results

By Corollary 1 we reprove the Anashin's result. Corollary 2

Let $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ be a 1-Lipschitz function. Then, (1) f is measure-preserving if and only if f is of the form f(x) = d + x + 2g(x) for some 2-adic integer $d \in \mathbb{Z}_2$ and some 1-Lipschitz function g(x). (2) f is ergodic if and only if f is of the form $f(x) = 1 + x + 2\Delta g(x)$ for some 1-Lipschitz function g(x).

By Corollary 2 we reprove the Anashin's result. **Corollary 3**

Let $f(x) = \sum_{m=0}^{\infty} a_m {x \choose m} : \mathbb{Z}_2 \to \mathbb{Z}_2$ be a 1-Lipschitz function. Then f is ergodic if and only if all conditions in Anashin's Theorem are satisfied.

An application: Ergodicity of polynomials over \mathbb{Z}_2

• To provide a characterization for the ergodicity of a polynomial over \mathbb{Z}_2 in term of its coefficients. For simplicity, we take a polynomial $f \in \mathbb{Z}_2[x]$ with f(0) = 1:

$$f = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + 1.$$

Then we set

$$A_0=\sum_{i\equiv 0\pmod{2},i>0}a_i,\ A_1=\sum_{i\equiv 1\pmod{2}}a_i.$$

Theorem(Larin, Durand and Paccaut)

The polynomial f is ergodic over \mathbb{Z}_2 if and only if the following conditions are simultaneously satisfied:

$$a_1 \equiv 1 \pmod{2};$$

 $A_1 \equiv 1 \pmod{2};$
 $A_0 + A_1 \equiv 1 \pmod{4};$
 $a_1 + 2a_2 + A_1 \equiv 2 \pmod{4}.$

(1) For a general prime p > 2, try to provide characterization results for $f : \mathbb{Z}_p \to \mathbb{Z}_p$ to be ergodic.

(2) Problem (raised by Anashin): Try to develop the theory for $\mathbb{F}_q[[t]]$ analogous to Anashin's theory on derivatives modulo p^k on \mathbb{Z}_p

Thank you for your attention !!!

(1) For a general prime p > 2, try to provide characterization results for $f : \mathbb{Z}_p \to \mathbb{Z}_p$ to be ergodic.

(2) Problem (raised by Anashin): Try to develop the theory for $\mathbb{F}_q[[t]]$ analogous to Anashin's theory on derivatives modulo p^k on \mathbb{Z}_p

Thank you for your attention !!!