Haar multiresolution analysis and Haar bases on the ring of rational adeles

Sergei Evdokimov

St.Petersburg Department of Steklov Mathematical Institute Russia

International Workshop
on p-Adic Methods for Modeling of Complex Systems
ZiF, Bielefeld, April 18, 2013

Outline

(1) Haars over completions of \mathbb{Q}

- Real Haar
- p-Adic Haar
- Absolute values on \mathbb{Q}
(2) Adeles
- Rational adele ring \mathbb{A}
- Hilbert space $L^{2}(\mathbb{A})$
(3) Adelic Haar over \mathbb{Q}
- Pseudo Haar MRA
- Haar MRA's
- Haar wavelet bases

Real Haar wavelet basis

For each prime p the system of functions

$$
\left\{p^{n / 2} \psi^{(i)}\left(p^{n} x-b\right), x \in \mathbb{R}: n, b \in \mathbb{Z}, i=1, \ldots, p-1\right\}
$$

forms an orthonormal basis in the Hilbert space $L^{2}(\mathbb{R})$.

Real Haar wavelet basis

For each prime p the system of functions

$$
\left\{p^{n / 2} \psi^{(i)}\left(p^{n} x-b\right), x \in \mathbb{R}: n, b \in \mathbb{Z}, i=1, \ldots, p-1\right\}
$$

forms an orthonormal basis in the Hilbert space $L^{2}(\mathbb{R})$. Here $\psi^{(i)}=\psi_{\infty, p}^{(i)}$ is the i th real Haar wavelet function:

$$
\psi_{\infty, p}^{(i)}(x)= \begin{cases}\zeta^{i j}, & \text { if } \frac{j}{p} \leq x<\frac{j+1}{p}, j=0, \ldots, p-1 \\ 0, & \text { otherwise }\end{cases}
$$

where $\zeta=\exp (2 \pi \sqrt{-1} / p)$ is a primitive p th root of unity.

Real Haar wavelet basis

For each prime p the system of functions

$$
\left\{p^{n / 2} \psi^{(i)}\left(p^{n} x-b\right), x \in \mathbb{R}: n, b \in \mathbb{Z}, i=1, \ldots, p-1\right\}
$$

forms an orthonormal basis in the Hilbert space $L^{2}(\mathbb{R})$. Here $\psi^{(i)}=\psi_{\infty, p}^{(i)}$ is the ith real Haar wavelet function:

$$
\psi_{\infty, p}^{(i)}(x)= \begin{cases}\zeta^{i j}, & \text { if } \frac{j}{p} \leq x<\frac{j+1}{p}, j=0, \ldots, p-1, \\ 0, & \text { otherwise },\end{cases}
$$

where $\zeta=\exp (2 \pi \sqrt{-1} / p)$ is a primitive p th root of unity.
The set of translations is a discrete group isomorphic to \mathbb{Z}.

Real Haar MRA (Meyer, Mallat, 1980's)

For each n let us define a closed subspace of $L^{2}(\mathbb{R})$ by

$$
V_{n}=\operatorname{span}\left\{\chi_{M}: M=\left[\frac{b}{p^{n}}, \frac{b+1}{p^{n}}\right), b \in \mathbb{Z}\right\} .
$$

Real Haar MRA (Meyer, Mallat, 1980's)

For each n let us define a closed subspace of $L^{2}(\mathbb{R})$ by

$$
V_{n}=\operatorname{span}\left\{\chi_{M}: M=\left[\frac{b}{p^{n}}, \frac{b+1}{p^{n}}\right), b \in \mathbb{Z}\right\} .
$$

Then the sequence $\left\{V_{n}\right\}_{n \in \mathbb{Z}}$ forms an MRA in $L^{2}(\mathbb{R})$ with $\varphi=\varphi_{\infty}=\chi_{[0,1)}$ as a scaling function:

- $V_{n} \subset V_{n+1}$ for all n,
- $\bigcup_{n \in \mathbb{Z}} V_{n}=L^{2}(\mathbb{R}), \bigcap_{n \in \mathbb{Z}} V_{n}=\{0\}$,
- $V_{n+1}=\left\{f^{p, 0}: f \in V_{n}\right\}$ for all n,
- $\left\{\varphi^{1, b}: b \in \mathbb{Z}\right\}$ is an orthonormal basis of V_{0}.

Real Haar MRA (Meyer, Mallat, 1980's)

For each n let us define a closed subspace of $L^{2}(\mathbb{R})$ by

$$
V_{n}=\operatorname{span}\left\{\chi_{M}: M=\left[\frac{b}{p^{n}}, \frac{b+1}{p^{n}}\right), b \in \mathbb{Z}\right\} .
$$

Then the sequence $\left\{V_{n}\right\}_{n \in \mathbb{Z}}$ forms an MRA in $L^{2}(\mathbb{R})$ with $\varphi=\varphi_{\infty}=\chi_{[0,1)}$ as a scaling function:

- $V_{n} \subset V_{n+1}$ for all n,
- $\bigcup_{n \in \mathbb{Z}} V_{n}=L^{2}(\mathbb{R}), \bigcap_{n \in \mathbb{Z}} V_{n}=\{0\}$,
- $V_{n+1}=\left\{f^{p, 0}: f \in V_{n}\right\}$ for all n,
- $\left\{\varphi^{1, b}: b \in \mathbb{Z}\right\}$ is an orthonormal basis of V_{0}.

It follows that $L^{2}(\mathbb{R})=\bigoplus_{n \in \mathbb{Z}} W_{n}$ where $W_{n}=V_{n+1} \ominus V_{n}$.

The field \mathbb{Q}_{p} of p-adic numbers

By definition \mathbb{Q}_{p} is the completion of \mathbb{Q} w.r. to the topology in which x is close to y if $x-y$ is divided by a large power of p.

Each non-zero $x \in \mathbb{Q}_{p}$ is uniquely represented in the form

$$
x=\sum_{i=k}^{\infty} x_{i} p^{i} \quad \text { where } \quad 0 \leq x_{i} \leq p-1, x_{k} \neq 0
$$

The fractional part of x is defined by $\{x\}_{p}=\sum_{i=k}^{-1} x_{i} p^{i}$ and the ring of p-adic integers by $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:\{x\}_{p}=0\right\}$.
The field \mathbb{Q}_{p} is locally compact whereas the ring \mathbb{Z}_{p} is compact. Denote by μ_{p} the normalized Haar measure on \mathbb{Q}_{p}.

p-Adic Haar wavelet basis (Kozyrev, 2002)

Similarly, in the p-adic case the system of functions

$$
\left\{p^{n / 2} \psi^{(i)}\left(p^{-n} x-b\right), x \in \mathbb{Q}_{p}: n \in \mathbb{Z}, b \in I_{p}, i=1, \ldots, p-1\right\}
$$

forms an orthonormal basis in the Hilbert space $L^{2}\left(\mathbb{Q}_{p}\right)$.

p-Adic Haar wavelet basis (Kozyrev, 2002)

Similarly, in the p-adic case the system of functions

$$
\left\{p^{n / 2} \psi^{(i)}\left(p^{-n} x-b\right), x \in \mathbb{Q}_{p}: n \in \mathbb{Z}, b \in I_{p}, i=1, \ldots, p-1\right\}
$$

forms an orthonormal basis in the Hilbert space $L^{2}\left(\mathbb{Q}_{p}\right)$. Here $\psi^{(i)}=\psi_{\text {fin }, p}^{(i)}$ is the ith p-adic Haar wavelet function:

$$
\psi_{\mathrm{fin}, p}^{(i)}(x)= \begin{cases}\zeta^{i j}, & \text { if } x \in j+p \mathbb{Z}_{p}, j=0, \ldots, p-1, \\ 0, & \text { otherwise },\end{cases}
$$

$$
\text { and } I_{p}=\left\{x=a / p^{k}: 0 \leq a<p^{k}, k=0,1, \ldots\right\} .
$$

p-Adic Haar wavelet basis (Kozyrev, 2002)

Similarly, in the p-adic case the system of functions

$$
\left\{p^{n / 2} \psi^{(i)}\left(p^{-n} x-b\right), x \in \mathbb{Q}_{p}: n \in \mathbb{Z}, b \in I_{p}, i=1, \ldots, p-1\right\}
$$

forms an orthonormal basis in the Hilbert space $L^{2}\left(\mathbb{Q}_{p}\right)$. Here $\psi^{(i)}=\psi_{\text {fin }, p}^{(i)}$ is the ith p-adic Haar wavelet function:

$$
\psi_{\text {fin }, p}^{(i)}(x)= \begin{cases}\zeta^{i j}, & \text { if } x \in j+p \mathbb{Z}_{p}, j=0, \ldots, p-1, \\ 0, & \text { otherwise },\end{cases}
$$

and $I_{p}=\left\{x=a / p^{k}: 0 \leq a<p^{k}, k=0,1, \ldots\right\}$.
Note. The set of translations here is a discrete set, not a group. There are no non-trivial discrete subgroups of \mathbb{Q}_{p}.

p-Adic Haar MRA (Sh-Sk 2009, Al-Ev-Sk 2010)

For each n let us define a closed subspace of $L^{2}\left(\mathbb{Q}_{p}\right)$ by

$$
V_{n}=\operatorname{span}\left\{\chi_{M}: M=b+p^{n} \mathbb{Z}_{p}, b \in \mathbb{Q}_{p}\right\}
$$

p-Adic Haar MRA (Sh-Sk 2009, Al-Ev-Sk 2010)

For each n let us define a closed subspace of $L^{2}\left(\mathbb{Q}_{p}\right)$ by

$$
V_{n}=\operatorname{span}\left\{\chi_{M}: M=b+p^{n} \mathbb{Z}_{p}, b \in \mathbb{Q}_{p}\right\}
$$

Then the sequence $\left\{V_{n}\right\}_{n \in \mathbb{Z}}$ forms an MRA in $L^{2}\left(\mathbb{Q}_{p}\right)$ with $\varphi=\varphi_{p}=\chi_{\mathbb{Z}_{p}}$ as a scaling function:

p-Adic Haar MRA (Sh-Sk 2009, Al-Ev-Sk 2010)

For each n let us define a closed subspace of $L^{2}\left(\mathbb{Q}_{p}\right)$ by

$$
V_{n}=\operatorname{span}\left\{\chi_{M}: M=b+p^{n} \mathbb{Z}_{p}, b \in \mathbb{Q}_{p}\right\} .
$$

Then the sequence $\left\{V_{n}\right\}_{n \in \mathbb{Z}}$ forms an MRA in $L^{2}\left(\mathbb{Q}_{p}\right)$ with $\varphi=\varphi_{p}=\chi_{z_{p}}$ as a scaling function:

- $V_{n} \subset V_{n+1}$ for all n,
- $\bigcup_{n \in \mathbb{Z}} V_{n}=L^{2}\left(\mathbb{Q}_{p}\right), \bigcap_{n \in \mathbb{Z}} V_{n}=\{0\}$,
- $V_{n+1}=\left\{f^{p^{-1}, 0}: f \in V_{n}\right\}$ for all n,
- $\left\{\varphi^{1, b}: b \in I_{p}\right\}$ is an orthonormal basis of V_{0}.

p-Adic Haar MRA (Sh-Sk 2009, Al-Ev-Sk 2010)

For each n let us define a closed subspace of $L^{2}\left(\mathbb{Q}_{p}\right)$ by

$$
V_{n}=\operatorname{span}\left\{\chi_{M}: M=b+p^{n} \mathbb{Z}_{p}, b \in \mathbb{Q}_{p}\right\} .
$$

Then the sequence $\left\{V_{n}\right\}_{n \in \mathbb{Z}}$ forms an MRA in $L^{2}\left(\mathbb{Q}_{p}\right)$ with $\varphi=\varphi_{p}=\chi_{z_{p}}$ as a scaling function:

- $V_{n} \subset V_{n+1}$ for all n,
- $\bigcup_{n \in \mathbb{Z}} V_{n}=L^{2}\left(\mathbb{Q}_{p}\right), \bigcap_{n \in \mathbb{Z}} V_{n}=\{0\}$,
- $V_{n+1}=\left\{f p^{-1}, 0: f \in V_{n}\right\}$ for all n,
- $\left\{\varphi^{1, b}: b \in I_{p}\right\}$ is an orthonormal basis of V_{0}.

It follows that $L^{2}\left(\mathbb{Q}_{p}\right)=\oplus_{n \in \mathbb{Z}} W_{n}$ where $W_{n}=V_{n+1} \ominus V_{n}$.

Definition

Let K be a field.
A function $|\cdot|: K \rightarrow \mathbb{R}$ is an absolute value or norm if

- $|x| \geq 0$ and $|x|=0 \Longleftrightarrow x=0$,
- $|x y|=|x||y|$,
- $|x+y| \leq|x|+|y|$.

We have $|1|=1$ and $|x|=|-x|$ for all $x \in K$.

Definition

Let K be a field.
A function $|\cdot|: K \rightarrow \mathbb{R}$ is an absolute value or norm if

- $|x| \geq 0$ and $|x|=0 \Longleftrightarrow x=0$,
- $|x y|=|x||y|$,
- $|x+y| \leq|x|+|y|$.

We have $|1|=1$ and $|x|=|-x|$ for all $x \in K$.
The norm is ultrametric if $|x+y| \leq \max (|x|,|y|)$ for all $x, y \in K$. Otherwise it is archimedean.

In the ultrametric case every triangle in K is isosceles with respect to the metric $\rho(x, y):=|x-y|$.

Examples

- Trivial absolute value: $|x|:=1$ for all $x \neq 0$.

Examples

- Trivial absolute value: $|x|:=1$ for all $x \neq 0$.
- $K=\mathbb{R}$: the ordinary absolute value $|\cdot|_{\infty}$ on \mathbb{R}

$$
|x|_{\infty}=\left\{\begin{aligned}
x, & \text { if } x \geq 0 \\
-x, & \text { otherwise }
\end{aligned}\right.
$$

- $K=\mathbb{Q}_{p}$: the p-adic norm $|\cdot|_{p}$ on \mathbb{Q}_{p}

$$
|x|_{p}=p^{-k} \text { where } x=p^{k} u, \quad u \in \mathbb{Z}_{p}^{\times} .
$$

This norm is ultrametric.

Examples

- Trivial absolute value: $|x|:=1$ for all $x \neq 0$.
- $K=\mathbb{R}$: the ordinary absolute value $|\cdot|_{\infty}$ on \mathbb{R}

$$
|x|_{\infty}=\left\{\begin{aligned}
x, & \text { if } x \geq 0 \\
-x, & \text { otherwise }
\end{aligned}\right.
$$

- $K=\mathbb{Q}_{p}$: the p-adic norm $|\cdot|_{p}$ on \mathbb{Q}_{p}

$$
|x|_{p}=p^{-k} \text { where } x=p^{k} u, \quad u \in \mathbb{Z}_{p}^{\times}
$$

This norm is ultrametric.

- $K=\mathbb{Q}$: the restrictions of $|\cdot|_{\infty}$ and $|\cdot|_{p}$ to \mathbb{Q}. The fields \mathbb{R} and \mathbb{Q}_{p} are completions of \mathbb{Q} with respect to them.

Ostrowski's Theorem (1916)

Two absolute values $|\cdot|_{1}$ and $|\cdot|_{2}$ are equivalent if

$$
\left\{x \in K:|x|_{1}<1\right\}=\left\{x \in K:|x|_{2}<1\right\}
$$

In this case $|x|_{1}^{c}=|x|_{2}$ for all x where $c>0$.

Ostrowski's Theorem (1916)

Two absolute values $|\cdot|_{1}$ and $|\cdot|_{2}$ are equivalent if

$$
\left\{x \in K:|x|_{1}<1\right\}=\left\{x \in K:|x|_{2}<1\right\} .
$$

In this case $|x|_{1}^{c}=|x|_{2}$ for all x where $c>0$.
Theorem Any non-trivial absolute value on the field \mathbb{Q} is equivalent either to the real absolute value $|\cdot|_{\infty}$ or to the p-adic absolute value $|\cdot|_{p}$ where p is a prime.

Ostrowski's Theorem (1916)

Two absolute values $|\cdot|_{1}$ and $|\cdot|_{2}$ are equivalent if

$$
\left\{x \in K:|x|_{1}<1\right\}=\left\{x \in K:|x|_{2}<1\right\} .
$$

In this case $|x|_{1}^{c}=|x|_{2}$ for all x where $c>0$.
Theorem Any non-trivial absolute value on the field \mathbb{Q} is equivalent either to the real absolute value $|\cdot|_{\infty}$ or to the p-adic absolute value $|\cdot|_{p}$ where p is a prime.

Classes of absolute values on \mathbb{Q} are in 1-1 correspondence to the elements of $\mathbb{P} \cup\{\infty\}$ where \mathbb{P} is the set of all primes.
We refer to $\mathbb{P} \cup\{\infty\}$ as the extended set of primes.

Definition (Chevalley, 1936)

Definition (Chevalley, 1936)

Under the adele ring \mathbb{A} we mean here the restricted direct product of the field $\mathbb{Q}_{\infty}=\mathbb{R}$ and all p-adic fields \mathbb{Q}_{p} where $p \in \mathbb{P}$ with respect to their subrings \mathbb{Z}_{p}, i.e. the set of all

$$
x=\left(x_{\infty}, \ldots, x_{p}, \ldots\right) \quad \text { where } \quad x_{\infty} \in \mathbb{R}, x_{p} \in \mathbb{Q}_{p}
$$

such that $x_{p} \in \mathbb{Z}_{p}$ for almost all $p \in \mathbb{P}$.

Definition (Chevalley, 1936)

Under the adele ring \mathbb{A} we mean here the restricted direct product of the field $\mathbb{Q}_{\infty}=\mathbb{R}$ and all p-adic fields \mathbb{Q}_{p} where $p \in \mathbb{P}$ with respect to their subrings \mathbb{Z}_{p}, i.e. the set of all

$$
x=\left(x_{\infty}, \ldots, x_{p}, \ldots\right) \quad \text { where } \quad x_{\infty} \in \mathbb{R}, x_{p} \in \mathbb{Q}_{p}
$$

such that $x_{p} \in \mathbb{Z}_{p}$ for almost all $p \in \mathbb{P}$.
Denote by \mathbb{A}^{\times}the multiplicative group of the ring \mathbb{A}. Then

$$
x \in \mathbb{A}^{\times} \Longrightarrow x_{p} \in \mathbb{Z}_{p}^{\times} \text {for almost all } p \in \mathbb{P}
$$

Thus, \mathbb{A}^{\times}is the restricted direct product of the group \mathbb{R}^{\times}and all groups \mathbb{Q}_{p}^{\times}with respect to their subgroups \mathbb{Z}_{p}^{\times}.

Adelic topology

From the definition of \mathbb{A} it follows that

$$
\mathbb{A}=\bigcup_{S} \mathbb{A}_{S} \quad \text { with } \quad \mathbb{A}_{S}=\mathbb{Q}_{S} \times \prod_{p \notin S} \mathbb{Z}_{p}
$$

where $\mathbb{Q}_{S}=\prod_{v \in S} \mathbb{Q}_{V}$ and S runs over all finite subsets of the set $\mathbb{P} \cup\{\infty\}$ that contain ∞.

Adelic topology

From the definition of \mathbb{A} it follows that

$$
\mathbb{A}=\bigcup_{S} \mathbb{A}_{S} \quad \text { with } \quad \mathbb{A}_{S}=\mathbb{Q}_{S} \times \prod_{p \notin S} \mathbb{Z}_{p}
$$

where $\mathbb{Q}_{S}=\prod_{v \in S} \mathbb{Q}_{V}$ and S runs over all finite subsets of the set $\mathbb{P} \cup\{\infty\}$ that contain ∞.
Since the fields \mathbb{Q}_{∞} and \mathbb{Q}_{p} are locally compact and the ring \mathbb{Z}_{p} is compact for all $p \in \mathbb{P}$, the ring \mathbb{A} is locally compact.

Adelic topology

From the definition of \mathbb{A} it follows that

$$
\mathbb{A}=\bigcup_{S} \mathbb{A}_{S} \quad \text { with } \quad \mathbb{A}_{S}=\mathbb{Q}_{S} \times \prod_{p \notin S} \mathbb{Z}_{p}
$$

where $\mathbb{Q}_{S}=\prod_{v \in S} \mathbb{Q}_{V}$ and S runs over all finite subsets of the set $\mathbb{P} \cup\{\infty\}$ that contain ∞.
Since the fields \mathbb{Q}_{∞} and \mathbb{Q}_{p} are locally compact and the ring \mathbb{Z}_{p} is compact for all $p \in \mathbb{P}$, the ring \mathbb{A} is locally compact.
Convergence: $x^{(n)} \rightarrow 0$ in \mathbb{A} if and only if $x^{(n)} \in \mathbb{A}_{S}$ for some S and all n and $x_{v}^{(n)} \rightarrow 0$ for all $v \in \mathbb{P} \cup\{\infty\}$.

Adelic topology

From the definition of \mathbb{A} it follows that

$$
\mathbb{A}=\bigcup_{S} \mathbb{A}_{S} \quad \text { with } \quad \mathbb{A}_{S}=\mathbb{Q}_{S} \times \prod_{p \notin S} \mathbb{Z}_{p}
$$

where $\mathbb{Q}_{S}=\prod_{v \in S} \mathbb{Q}_{V}$ and S runs over all finite subsets of the set $\mathbb{P} \cup\{\infty\}$ that contain ∞.
Since the fields \mathbb{Q}_{∞} and \mathbb{Q}_{p} are locally compact and the ring \mathbb{Z}_{p} is compact for all $p \in \mathbb{P}$, the ring \mathbb{A} is locally compact.
Convergence: $x^{(n)} \rightarrow 0$ in \mathbb{A} if and only if $x^{(n)} \in \mathbb{A}_{S}$ for some S and all n and $x_{v}^{(n)} \rightarrow 0$ for all $v \in \mathbb{P} \cup\{\infty\}$.
Adelic topology is metrizable.

Field \mathbb{Q} as a discrete subring of \mathbb{A}

Let $x \in \mathbb{Q}$. If $x=a / b$, then $x \in \mathbb{Z}_{p}$ for all $p \in \mathbb{P}$ not dividing b. Therefore \mathbb{Q} can be embedded diagonally in \mathbb{A}

$$
\mathbb{Q} \hookrightarrow \mathbb{A}, \quad x \mapsto(\ldots, x, \ldots) .
$$

Field \mathbb{Q} as a discrete subring of \mathbb{A}

Let $x \in \mathbb{Q}$. If $x=a / b$, then $x \in \mathbb{Z}_{p}$ for all $p \in \mathbb{P}$ not dividing b. Therefore \mathbb{Q} can be embedded diagonally in \mathbb{A}

$$
\mathbb{Q} \hookrightarrow \mathbb{A}, \quad x \mapsto(\ldots, x, \ldots) .
$$

Theorem The field \mathbb{Q} is a discrete subring of \mathbb{A} in the adelic topology and the factor \mathbb{A} / \mathbb{Q} is compact.

Field \mathbb{Q} as a discrete subring of \mathbb{A}

Let $x \in \mathbb{Q}$. If $x=a / b$, then $x \in \mathbb{Z}_{p}$ for all $p \in \mathbb{P}$ not dividing b. Therefore \mathbb{Q} can be embedded diagonally in \mathbb{A}

$$
\mathbb{Q} \hookrightarrow \mathbb{A}, \quad x \mapsto(\ldots, x, \ldots) .
$$

Theorem The field \mathbb{Q} is a discrete subring of \mathbb{A} in the adelic topology and the factor \mathbb{A} / \mathbb{Q} is compact.

Proof. It suffices to show that the set $F=[0,1) \times \prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$ is a fundamental domain of \mathbb{Q}. This means that the translations of F by elements of \mathbb{Q} are pairwise disjoint and form a partition of \mathbb{A}.

Field \mathbb{Q} as a discrete subring of \mathbb{A}

Let $x \in \mathbb{Q}$. If $x=a / b$, then $x \in \mathbb{Z}_{p}$ for all $p \in \mathbb{P}$ not dividing b. Therefore \mathbb{Q} can be embedded diagonally in \mathbb{A}

$$
\mathbb{Q} \hookrightarrow \mathbb{A}, \quad x \mapsto(\ldots, x, \ldots) .
$$

Theorem The field \mathbb{Q} is a discrete subring of \mathbb{A} in the adelic topology and the factor \mathbb{A} / \mathbb{Q} is compact.

Proof. It suffices to show that the set $F=[0,1) \times \prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$ is a fundamental domain of \mathbb{Q}. This means that the translations of F by elements of \mathbb{Q} are pairwise disjoint and form a partition of \mathbb{A}. Let $x \in \mathbb{A}$. Then $a:=x-\sum_{p \in \mathbb{P}}\left\{x_{p}\right\}_{p}$ is in $\mathbb{A}_{\infty}=\mathbb{R} \times \prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$, and hence $a-\left\lfloor a_{\infty}\right\rfloor \in F$. If $x \in F \cap \mathbb{Q}$, then $x \in \mathbb{Z}$, so $x=0$. \bullet

Product formula

For each $x \in \mathbb{A}^{\times}$set

$$
\|x\|_{\mathbb{A}}=\prod_{v \in \mathbb{P} \cup\{\infty\}}\left|x_{v}\right|_{v}=\left|x_{\infty}\right|_{\infty} \prod_{p \in \mathbb{P}}\left|x_{p}\right|_{p}
$$

The product is well defined because $\left|x_{p}\right|_{p}=1$ for almost all p.

Product formula

For each $x \in \mathbb{A}^{\times}$set

$$
\|x\|_{\mathbb{A}}=\prod_{v \in \mathbb{P} \cup\{\infty\}}\left|x_{v}\right|_{v}=\left|x_{\infty}\right|_{\infty} \prod_{p \in \mathbb{P}}\left|x_{p}\right|_{p}
$$

The product is well defined because $\left|x_{p}\right|_{p}=1$ for almost all p. Since all local norms are multiplicative, we have

$$
\|x y\|_{\mathbb{A}}=\|x\|_{\mathbb{A}}\|y\|_{\mathbb{A}} \quad \text { for all } \quad x, y \in \mathbb{A}^{x} .
$$

Theorem If $x \in \mathbb{Q}^{\times}$, then $\|x\|_{\mathbb{A}}=1$.

Product formula

For each $x \in \mathbb{A}^{\times}$set

$$
\|x\|_{\mathbb{A}}=\prod_{v \in \mathbb{P} \cup\{\infty\}}\left|x_{v}\right|_{v}=\left|x_{\infty}\right|_{\infty} \prod_{p \in \mathbb{P}}\left|x_{p}\right|_{p}
$$

The product is well defined because $\left|x_{p}\right|_{p}=1$ for almost all p. Since all local norms are multiplicative, we have

$$
\|x y\|_{\mathbb{A}}=\|x\|_{\mathbb{A}}\|y\|_{\mathbb{A}} \quad \text { for all } \quad x, y \in \mathbb{A}^{\times} .
$$

Theorem If $x \in \mathbb{Q}^{\times}$, then $\|x\|_{\mathbb{A}}=1$.
Proof. Let $x= \pm \prod_{p \in \mathbb{P}} p^{k_{p}}$ where $k_{p}=0$ for almost all p. Then $|x|_{\infty}=\prod_{p \in \mathbb{P}} p^{k_{p}}$ and $|x|_{p}=p^{-k_{p}}$ for $p \in \mathbb{P}$. Thus, $\|x\|_{\mathbb{A}}=1$. \bullet

Haar measure on \mathbb{A}

Denote by $\mu_{\mathbb{A}}$ the Haar measure on \mathbb{A} normalized by $\mu_{\mathbb{A}}(F)=1$ where $F=[0,1) \times \prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$. Then $\mu_{\mathbb{A}}$ equals the product of the Lebesgue measure μ_{∞} on \mathbb{R} and all p-adic measures μ_{p} on \mathbb{Q}_{p}.

Haar measure on \mathbb{A}

Denote by $\mu_{\mathbb{A}}$ the Haar measure on \mathbb{A} normalized by $\mu_{\mathbb{A}}(F)=1$ where $F=[0,1) \times \prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$. Then $\mu_{\mathbb{A}}$ equals the product of the Lebesgue measure μ_{∞} on \mathbb{R} and all p-adic measures μ_{p} on \mathbb{Q}_{p}.
Since $\mu_{v}(a X)=|a|_{v} \mu_{v}(X)$ for all $v \in \mathbb{P} \cup\{\infty\}, a \in \mathbb{Q}_{v}^{\times}, X \subset \mathbb{Q}_{v}$, it follows that given $X \subset \mathbb{A}$ we have

$$
\mu_{\mathbb{A}}(a X)=\|a\|_{\mathbb{A}} \mu_{\mathbb{A}}(X) \quad \text { for all } \quad a \in \mathbb{A}^{\times}
$$

Haar measure on \mathbb{A}

Denote by $\mu_{\mathbb{A}}$ the Haar measure on \mathbb{A} normalized by $\mu_{\mathbb{A}}(F)=1$ where $F=[0,1) \times \prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$. Then $\mu_{\mathbb{A}}$ equals the product of the Lebesgue measure μ_{∞} on \mathbb{R} and all p-adic measures μ_{p} on \mathbb{Q}_{p}.
Since $\mu_{v}(a X)=|a|_{v} \mu_{v}(X)$ for all $v \in \mathbb{P} \cup\{\infty\}, a \in \mathbb{Q}_{v}^{\times}, X \subset \mathbb{Q}_{v}$, it follows that given $X \subset \mathbb{A}$ we have

$$
\mu_{\mathbb{A}}(a X)=\|a\|_{\mathbb{A}} \mu_{\mathbb{A}}(X) \quad \text { for all } \quad a \in \mathbb{A}^{\times}
$$

In particular, the product formula implies that

$$
\mu_{\mathbb{A}}(a X)=\mu_{\mathbb{A}}(X) \quad \text { for all } \quad a \in \mathbb{Q}^{\times}
$$

The measure $\mu_{\mathbb{A}}$ is regular. '

Dense subspace of $L^{2}(\mathbb{A})$

For a finite set $S \subset \mathbb{P} \cup\{\infty\}$ let

$$
L_{S}=L^{2}\left(\mathbb{Q}_{S}\right) \otimes \mathbb{C} \varphi_{S^{\prime}}
$$

where $\varphi_{S^{\prime}}=\bigotimes_{v \notin S} \varphi_{v}$ with $\varphi_{\infty}=\chi_{[0,1)}$ and $\varphi_{p}=\chi_{\mathbb{Z}_{p}}$ for $p \in \mathbb{P}$.

Dense subspace of $L^{2}(\mathbb{A})$

For a finite set $S \subset \mathbb{P} \cup\{\infty\}$ let

$$
L_{S}=L^{2}\left(\mathbb{Q}_{S}\right) \otimes \mathbb{C} \varphi_{S^{\prime}}
$$

where $\varphi_{S^{\prime}}=\bigotimes_{v \notin S} \varphi_{v}$ with $\varphi_{\infty}=\chi_{[0,1)}$ and $\varphi_{p}=\chi_{\mathbb{Z}_{p}}$ for $p \in \mathbb{P}$.
(For example, if $S=\emptyset$, then $L_{S}=\mathbb{C} \varphi$ where $\varphi=\bigotimes_{v} \varphi_{v}=\chi_{F}$.)

Dense subspace of $L^{2}(\mathbb{A})$

For a finite set $S \subset \mathbb{P} \cup\{\infty\}$ let

$$
L_{S}=L^{2}\left(\mathbb{Q}_{S}\right) \otimes \mathbb{C} \varphi_{S^{\prime}}
$$

where $\varphi_{S^{\prime}}=\bigotimes_{v \notin S} \varphi_{v}$ with $\varphi_{\infty}=\chi_{[0,1)}$ and $\varphi_{p}=\chi_{\mathbb{Z}_{p}}$ for $p \in \mathbb{P}$. (For example, if $S=\emptyset$, then $L_{S}=\mathbb{C} \varphi$ where $\varphi=\bigotimes_{v} \varphi_{v}=\chi_{F}$.)

If S contains ∞, then obviously L_{S} is a subspace of the space $L^{2}\left(\mathbb{A}_{s}\right)=L^{2}\left(\mathbb{Q}_{s}\right) \otimes L^{2}\left(\prod_{p \notin S} \mathbb{Z}_{p}\right)$.

Dense subspace of $L^{2}(\mathbb{A})$

For a finite set $S \subset \mathbb{P} \cup\{\infty\}$ let

$$
L_{S}=L^{2}\left(\mathbb{Q}_{S}\right) \otimes \mathbb{C} \varphi_{S^{\prime}}
$$

where $\varphi_{S^{\prime}}=\bigotimes_{v \notin S} \varphi_{v}$ with $\varphi_{\infty}=\chi_{[0,1)}$ and $\varphi_{p}=\chi_{\mathbb{Z}_{p}}$ for $p \in \mathbb{P}$.
(For example, if $S=\emptyset$, then $L_{S}=\mathbb{C} \varphi$ where $\varphi=\bigotimes_{V} \varphi_{V}=\chi_{F}$.)
If S contains ∞, then obviously L_{S} is a subspace of the space $L^{2}\left(\mathbb{A}_{s}\right)=L^{2}\left(\mathbb{Q}_{s}\right) \otimes L^{2}\left(\prod_{p \notin S} \mathbb{Z}_{p}\right)$.

Theorem The union of L_{S} over all finite S is dense in $L^{2}(\mathbb{A})$.

Dense subspace of $L^{2}(\mathbb{A})$

For a finite set $S \subset \mathbb{P} \cup\{\infty\}$ let

$$
L_{S}=L^{2}\left(\mathbb{Q}_{S}\right) \otimes \mathbb{C} \varphi_{S^{\prime}}
$$

where $\varphi_{S^{\prime}}=\bigotimes_{v \notin S} \varphi_{v}$ with $\varphi_{\infty}=\chi_{[0,1)}$ and $\varphi_{p}=\chi_{\mathbb{Z}_{p}}$ for $p \in \mathbb{P}$.
(For example, if $S=\emptyset$, then $L_{S}=\mathbb{C} \varphi$ where $\varphi=\bigotimes_{V} \varphi_{V}=\chi_{F}$.)
If S contains ∞, then obviously L_{S} is a subspace of the space $L^{2}\left(\mathbb{A}_{S}\right)=L^{2}\left(\mathbb{Q}_{s}\right) \otimes L^{2}\left(\prod_{p \notin S} \mathbb{Z}_{p}\right)$.

Theorem The union of L_{S} over all finite S is dense in $L^{2}(\mathbb{A})$.
Proof. Follows from the regularity of the measure $\mu_{\mathbb{A}}$. \bullet

Tensor product of bases

For each $v \in \mathbb{P} \cup\{\infty\}$ let Ψ_{v} be an orthonormal basis in $L^{2}\left(\mathbb{Q}_{v}\right)$ such that $\varphi_{v} \in \Psi_{v}$. Set

$$
\Psi=\left\{\bigotimes_{v \in \mathbb{P} \cup\{\infty\}} \psi_{v}: \psi_{v} \in \Psi_{v} \text { for all } v, \psi_{v}=\varphi_{v} \text { for almost all } v\right\}
$$

Tensor product of bases

For each $v \in \mathbb{P} \cup\{\infty\}$ let Ψ_{v} be an orthonormal basis in $L^{2}\left(\mathbb{Q}_{v}\right)$ such that $\varphi_{v} \in \Psi_{v}$. Set

$$
\Psi=\left\{\bigotimes_{v \in \mathbb{P} \cup\{\infty\}} \psi_{v}: \psi_{v} \in \Psi_{v} \text { for all } v, \psi_{v}=\varphi_{v} \text { for almost all } v\right\}
$$

Theorem The set Ψ is an orthonormal basis in $L^{2}(\mathbb{A})$.

Tensor product of bases

For each $v \in \mathbb{P} \cup\{\infty\}$ let Ψ_{v} be an orthonormal basis in $L^{2}\left(\mathbb{Q}_{v}\right)$ such that $\varphi_{v} \in \Psi_{v}$. Set

$$
\Psi=\left\{\bigotimes_{v \in \mathbb{P} \cup\{\infty\}} \psi_{v}: \psi_{v} \in \psi_{v} \text { for all } v, \psi_{v}=\varphi_{v} \text { for almost all } v\right\} .
$$

Theorem The set Ψ is an orthonormal basis in $L^{2}(\mathbb{A})$.
Proof. Obviously the set ψ is orthonormal. Moreover, for any finite S it contains a basis of $L_{S}=\otimes_{v \in S} L^{2}\left(\mathbb{Q}_{V}\right) \otimes \mathbb{C} \varphi_{S^{\prime}}$. So the closure of the linear span of Ψ contains the closure of the union of all spaces L_{S}, which equals $L^{2}(\mathbb{A})$ by above.

Adelic dilations

Adelic dilations

For $r \in \mathbb{A}^{\times}$set

$$
D_{r}=T^{-1} H_{r} T
$$

where H_{r} and T are defined by $H_{r}(x)=r x, x \in \mathbb{A}$, and by

$$
T(x)=\left(x_{\infty}+\left\{x_{\mathrm{fin}}\right\}, x_{\mathrm{fin}}\right), \quad x=\left(x_{\infty}, x_{\mathrm{fin}}\right)
$$

with $\left\{x_{\text {fin }}\right\}:=\sum_{p \in \mathbb{P}}\left\{x_{p}\right\}_{p}$ the fractional part of $x_{\text {fin }}$.

Adelic dilations

For $r \in \mathbb{A}^{\times}$set

$$
D_{r}=T^{-1} H_{r} T
$$

where H_{r} and T are defined by $H_{r}(x)=r x, x \in \mathbb{A}$, and by

$$
T(x)=\left(x_{\infty}+\left\{x_{\mathrm{fin}}\right\}, x_{\mathrm{fin}}\right), \quad x=\left(x_{\infty}, x_{\mathrm{fin}}\right)
$$

with $\left\{x_{\mathrm{fin}}\right\}:=\sum_{p \in \mathbb{P}}\left\{x_{p}\right\}_{p}$ the fractional part of x_{fin}.
We observe that $D_{r}(x)_{\mathrm{fin}}=r_{\mathrm{fin}} x_{\mathrm{fin}}$ for all $x \in \mathbb{A}$, and if $r_{\mathrm{fin}}=1$, then D_{r} is reduced to the homothetic transformation of $\mathbb{Q}_{\infty}=\mathbb{R}$ with coefficient r_{∞} with respect to $\left\{x_{\mathrm{fin}}\right\}$ as an origin.

Adelic dilations

For $r \in \mathbb{A}^{\times}$set

$$
D_{r}=T^{-1} H_{r} T
$$

where H_{r} and T are defined by $H_{r}(x)=r x, x \in \mathbb{A}$, and by

$$
T(x)=\left(x_{\infty}+\left\{x_{\mathrm{fin}}\right\}, x_{\mathrm{fin}}\right), \quad x=\left(x_{\infty}, x_{\mathrm{fin}}\right)
$$

with $\left\{x_{\mathrm{fin}}\right\}:=\sum_{p \in \mathbb{P}}\left\{x_{p}\right\}_{p}$ the fractional part of x_{fin}.
We observe that $D_{r}(x)_{\mathrm{fin}}=r_{\mathrm{fin}} x_{\mathrm{fin}}$ for all $x \in \mathbb{A}$, and if $r_{\mathrm{fin}}=1$, then D_{r} is reduced to the homothetic transformation of $\mathbb{Q}_{\infty}=\mathbb{R}$ with coefficient r_{∞} with respect to $\left\{x_{\mathrm{fin}}\right\}$ as an origin. Obviously,

$$
D_{1}=\mathrm{id}_{\mathbb{A}}, \quad D_{r}^{-1}=D_{r^{-1}}, \quad D_{r} D_{s}=D_{r s} .
$$

Transformations D_{r} will be treated as adelic dilations.

Partitions of \mathbb{A}

For each $r \in \mathbb{A}^{\times}$let us define a partition of \mathbb{A} by

$$
P(r)=\left\{D_{r}^{-1}(M): M \in P\right\} \text { where } P=\{F+b: b \in \mathbb{Q}\} .
$$

Partitions of \mathbb{A}

For each $r \in \mathbb{A}^{\times}$let us define a partition of \mathbb{A} by

$$
P(r)=\left\{D_{r}^{-1}(M): M \in P\right\} \text { where } P=\{F+b: b \in \mathbb{Q}\} .
$$

Below we set $\|r\|=\left(\ldots,\left|r_{v}\right|_{v}, \ldots\right)$ and for $a, b \in \mathbb{A}^{x}$ say that a divides b if $(b / a)_{\infty} \in \mathbb{Z}$ and $(b / a)_{p} \in \mathbb{Z}_{p}$ for all $p \in \mathbb{P}$.

Partitions of \mathbb{A}

For each $r \in \mathbb{A}^{\times}$let us define a partition of \mathbb{A} by

$$
P(r)=\left\{D_{r}^{-1}(M): M \in P\right\} \text { where } P=\{F+b: b \in \mathbb{Q}\} .
$$

Below we set $\|r\|=\left(\ldots,\left|r_{v}\right|_{v}, \ldots\right)$ and for $a, b \in \mathbb{A}^{x}$ say that a divides b if $(b / a)_{\infty} \in \mathbb{Z}$ and $(b / a)_{p} \in \mathbb{Z}_{p}$ for all $p \in \mathbb{P}$.
Lemma The following statements hold:

- $P(s)$ is a refinement of $P(r)$ if and only if $\|r\|$ divides $\|s\|$,
- partition refining every partition $P(r)$ equals the partition of \mathbb{A} into points,
- partition that is refined by every partition $P(r)$ equals the partition of \mathbb{A} with the only element \mathbb{A}.

Proof of Lemma

For each $r \in \mathbb{A}^{\times}$set

$$
P_{0}(r)=\left\{T^{-1}(M): M \in P(r)\right\} .
$$

Then $P_{0}(r)$ equals the partition of \mathbb{A} into the sets

$$
M=M_{\infty} \times \prod_{p \in \mathbb{P}} M_{p}, \quad M_{p}=\mathbb{Z}_{p} \text { for almost all } p
$$

where $M_{\infty} \subset \mathbb{R}$ is a right for $r_{\infty}>0$ and left for $r_{\infty}<0$ semisegment of length $\left|r_{\infty}\right|_{\infty}^{-1}$ with the ends in the set $r_{\infty}^{-1} \mathbb{Z}$, and $M_{p} \subset \mathbb{Q}_{p}$ is a coset by the group $r_{p}^{-1} \mathbb{Z}_{p}$ for $p \in \mathbb{P}$.

Proof of Lemma

For each $r \in \mathbb{A}^{\times}$set

$$
P_{0}(r)=\left\{T^{-1}(M): M \in P(r)\right\}
$$

Then $P_{0}(r)$ equals the partition of \mathbb{A} into the sets

$$
M=M_{\infty} \times \prod_{p \in \mathbb{P}} M_{p}, \quad M_{p}=\mathbb{Z}_{p} \text { for almost all } p
$$

where $M_{\infty} \subset \mathbb{R}$ is a right for $r_{\infty}>0$ and left for $r_{\infty}<0$ semisegment of length $\left|r_{\infty}\right|_{\infty}^{-1}$ with the ends in the set $r_{\infty}^{-1} \mathbb{Z}$, and $M_{p} \subset \mathbb{Q}_{p}$ is a coset by the group $r_{p}^{-1} \mathbb{Z}_{p}$ for $p \in \mathbb{P}$.
Now Lemma follows from the corresponding statemente on $P_{0}(r)$'s which are obvious.

Family of closed spaces in $L^{2}(\mathbb{A})$

For $r \in \mathbb{A}^{\times}$let us define a closed subspace of $L^{2}(\mathbb{A})$ by

$$
V(r)=\operatorname{span}\left\{\chi_{M}: M \in P(r)\right\} .
$$

Family of closed spaces in $L^{2}(\mathbb{A})$

For $r \in \mathbb{A}^{\times}$let us define a closed subspace of $L^{2}(\mathbb{A})$ by

$$
V(r)=\operatorname{span}\left\{\chi_{M}: M \in P(r)\right\} .
$$

Theorem 1 The following statements hold:

- $V(r) \subset V(s)$ if and only if $\|r\|$ divides $\|s\|$.
- $\bigcup_{r \in \mathbb{A}^{x}} V(r)=L^{2}(\mathbb{A}), \bigcap_{r \in \mathbb{A}^{x}} V(r)=\{0\}$,
- $V(r s)=\left\{f^{D_{s}}: f \in V(r)\right\}$ for all r, s.
- $\left\{\varphi^{D_{r}, b}: b \in \mathbb{Q}\right\}$ is an orthogonal basis of $V(r)$ for all r.

Family of closed spaces in $L^{2}(\mathbb{A})$

For $r \in \mathbb{A}^{\times}$let us define a closed subspace of $L^{2}(\mathbb{A})$ by

$$
V(r)=\operatorname{span}\left\{\chi_{M}: M \in P(r)\right\} .
$$

Theorem 1 The following statements hold:

- $V(r) \subset V(s)$ if and only if $\|r\|$ divides $\|s\|$.
- $\bigcup_{r \in \mathbb{A}^{x}} V(r)=L^{2}(\mathbb{A}), \bigcap_{r \in \mathbb{A}^{x}} V(r)=\{0\}$,
- $V(r s)=\left\{f^{D_{s}}: f \in V(r)\right\}$ for all r, s.
- $\left\{\varphi^{D_{r}, b}: b \in \mathbb{Q}\right\}$ is an orthogonal basis of $V(r)$ for all r.

Proof. Follows from Lemma and the definitions.

Family of closed spaces in $L^{2}(\mathbb{A})$

For $r \in \mathbb{A}^{\times}$let us define a closed subspace of $L^{2}(\mathbb{A})$ by

$$
V(r)=\operatorname{span}\left\{\chi_{M}: M \in P(r)\right\} .
$$

Theorem 1 The following statements hold:

- $V(r) \subset V(s)$ if and only if $\|r\|$ divides $\|s\|$.
- $\bigcup_{r \in \mathbb{A}^{x}} V(r)=L^{2}(\mathbb{A}), \bigcap_{r \in \mathbb{A}^{x}} V(r)=\{0\}$,
- $V(r s)=\left\{f^{D_{s}}: f \in V(r)\right\}$ for all r, s.
- $\left\{\varphi^{D_{r}, b}: b \in \mathbb{Q}\right\}$ is an orthogonal basis of $V(r)$ for all r.

Proof. Follows from Lemma and the definitions.
We treat the family $\left\{V_{r}\right\}_{r \in \mathbb{A}^{\times}}$as the adelic pseudo Haar MRA.

Elementary adelic dilations

For $p \in \mathbb{P}$ let us define two invertible adeles by

$$
r(\infty, p)=(p, \ldots, 1, \ldots), \quad r(\operatorname{fin}, p)=\left(1, \ldots, p^{-1}, \ldots\right)
$$

Then obviously, $\|r(t, p)\|_{\mathbb{A}}=p$ where $t \in\{\infty$, fin $\}$.

Elementary adelic dilations

For $p \in \mathbb{P}$ let us define two invertible adeles by

$$
r(\infty, p)=(p, \ldots, 1, \ldots), \quad r(\operatorname{fin}, p)=\left(1, \ldots, p^{-1}, \ldots\right)
$$

Then obviously, $\|r(t, p)\|_{\mathbb{A}}=p$ where $t \in\{\infty$, fin $\}$. Set

$$
D_{t, p}=D_{r(t, p)}
$$

We call this transformation of \mathbb{A} an elementary adelic dilation.

Elementary adelic dilations

For $p \in \mathbb{P}$ let us define two invertible adeles by

$$
r(\infty, p)=(p, \ldots, 1, \ldots), \quad r(\text { fin }, p)=\left(1, \ldots, p^{-1}, \ldots\right)
$$

Then obviously, $\|r(t, p)\|_{\mathbb{A}}=p$ where $t \in\{\infty$, fin $\}$. Set

$$
D_{t, p}=D_{r(t, p)}
$$

We call this transformation of \mathbb{A} an elementary adelic dilation.
If $t=\infty$, then $D_{t, p}$ is reduced to the homothetic transformation of $\mathbb{Q}_{\infty}=\mathbb{R}$ with coefficient p w.r. to $\left\{x_{\mathrm{fin}}\right\}$ as an origin, while if $t=$ fin, then it is reduced to the division by p on \mathbb{Q}_{p} and to the translation by $\left\{\left(p^{-1} x\right)_{\mathrm{fin}}\right\}-\left\{x_{\mathrm{fin}}\right\}$ on \mathbb{Q}_{∞} (changing the origin).

Strategies

Definition We say that a sequence $\mathfrak{r}=\left\{r_{n}\right\}_{n \in \mathbb{Z}}$ of invertible adeles is a strategy if for each $n \in \mathbb{Z}$ there exist $t_{n} \in\{\infty$, fin $\}$ and $p_{n} \in \mathbb{P}$ such that

- $r_{n+1} / r_{n}=r\left(t_{n}, p_{n}\right)$ for all $n \in \mathbb{Z}$,
- the sets $\left\{n \in \mathbb{Z}_{>0}: t_{n}=\infty\right\}$ and $\left\{n \in \mathbb{Z}_{<0}: t_{n}=\infty\right\}$ are infinite,
- for each $p \in \mathbb{P}$ the sets $\left\{n \in \mathbb{Z}_{>0}: t_{n}=\right.$ fin, $\left.p_{n}=p\right\}$ and $\left\{n \in \mathbb{Z}_{<0}: t_{n}=\right.$ fin, $\left.p_{n}=p\right\}$ are infinite.

Strategies

Definition We say that a sequence $\mathfrak{r}=\left\{r_{n}\right\}_{n \in \mathbb{Z}}$ of invertible adeles is a strategy if for each $n \in \mathbb{Z}$ there exist $t_{n} \in\{\infty$, fin $\}$ and $p_{n} \in \mathbb{P}$ such that

- $r_{n+1} / r_{n}=r\left(t_{n}, p_{n}\right)$ for all $n \in \mathbb{Z}$,
- the sets $\left\{n \in \mathbb{Z}_{>0}: t_{n}=\infty\right\}$ and $\left\{n \in \mathbb{Z}_{<0}: t_{n}=\infty\right\}$ are infinite,
- for each $p \in \mathbb{P}$ the sets $\left\{n \in \mathbb{Z}_{>0}: t_{n}=\right.$ fin, $\left.p_{n}=p\right\}$ and $\left\{n \in \mathbb{Z}_{<0}: t_{n}=\right.$ fin, $\left.p_{n}=p\right\}$ are infinite.

The sequences $\left\{t_{n}\right\}$ and $\left\{p_{n}\right\}$ are uniquely determined by \mathfrak{r}. Conversely, \mathfrak{r} is uniquely determined by $\left\{t_{n}\right\},\left\{p_{n}\right\}$ and r_{0}.

Strategies

Definition We say that a sequence $\mathfrak{r}=\left\{r_{n}\right\}_{n \in \mathbb{Z}}$ of invertible adeles is a strategy if for each $n \in \mathbb{Z}$ there exist $t_{n} \in\{\infty$, fin $\}$ and $p_{n} \in \mathbb{P}$ such that

- $r_{n+1} / r_{n}=r\left(t_{n}, p_{n}\right)$ for all $n \in \mathbb{Z}$,
- the sets $\left\{n \in \mathbb{Z}_{>0}: t_{n}=\infty\right\}$ and $\left\{n \in \mathbb{Z}_{<0}: t_{n}=\infty\right\}$ are infinite,
- for each $p \in \mathbb{P}$ the sets $\left\{n \in \mathbb{Z}_{>0}: t_{n}=\right.$ fin, $\left.p_{n}=p\right\}$ and $\left\{n \in \mathbb{Z}_{<0}: t_{n}=\right.$ fin, $\left.p_{n}=p\right\}$ are infinite.

The sequences $\left\{t_{n}\right\}$ and $\left\{p_{n}\right\}$ are uniquely determined by \mathfrak{r}. Conversely, \mathfrak{r} is uniquely determined by $\left\{t_{n}\right\},\left\{p_{n}\right\}$ and r_{0}. It is easy to see that strategies do exist.

MRA associated with a strategy

Theorem 2 For a strategy $\left\{r_{n}\right\}_{n \in \mathbb{Z}}$ set $V_{n}=V\left(r_{n}\right)$. Then

- $V_{n} \subset V_{n+1}$ for all n,
- $\bigcup_{n \in \mathbb{Z}} V_{n}=L^{2}(\mathbb{A}), \bigcap_{n \in \mathbb{Z}} V_{n}=\{0\}$,
- $V_{n+1}=\left\{f^{D_{t_{n}, p_{n}}}: f \in V_{n}\right\}$ for all n,
- $\left\{\varphi^{D_{r}, b}: b \in \mathbb{Q}\right\}$ is an orthogonal basis of V_{0}.

MRA associated with a strategy

Theorem 2 For a strategy $\left\{r_{n}\right\}_{n \in \mathbb{Z}}$ set $V_{n}=V\left(r_{n}\right)$. Then

- $V_{n} \subset V_{n+1}$ for all n,
- $\bigcup_{n \in \mathbb{Z}} V_{n}=L^{2}(\mathbb{A}), \bigcap_{n \in \mathbb{Z}} V_{n}=\{0\}$,
- $V_{n+1}=\left\{f_{t_{n}, p_{n}}: f \in V_{n}\right\}$ for all n,
- $\left\{\varphi^{D_{r}, b}: b \in \mathbb{Q}\right\}$ is an orthogonal basis of V_{0}.

Proof. The definition of strategy implies that $\left\|r_{n}\right\|$ divides $\left\|r_{n+1}\right\|$ for all n and given $r \in \mathbb{A}^{\times}$there exist integers $n_{1}<n_{2}$ such that $\|r\|$ is divided by $\left\|r_{n_{1}}\right\|$ and divides $\left\|r_{n_{2}}\right\|$. Apply Theorem 1.

MRA associated with a strategy

Theorem 2 For a strategy $\left\{r_{n}\right\}_{n \in \mathbb{Z}}$ set $V_{n}=V\left(r_{n}\right)$. Then

- $V_{n} \subset V_{n+1}$ for all n,
- $\bigcup_{n \in \mathbb{Z}} V_{n}=L^{2}(\mathbb{A}), \bigcap_{n \in \mathbb{Z}} V_{n}=\{0\}$,
- $V_{n+1}=\left\{f_{t_{n}, p_{n}}: f \in V_{n}\right\}$ for all n,
- $\left\{\varphi^{D_{r}, b}: b \in \mathbb{Q}\right\}$ is an orthogonal basis of V_{0}.

Proof. The definition of strategy implies that $\left\|r_{n}\right\|$ divides $\left\|r_{n+1}\right\|$ for all n and given $r \in \mathbb{A}^{\times}$there exist integers $n_{1}<n_{2}$ such that $\|r\|$ is divided by $\left\|r_{n_{1}}\right\|$ and divides $\left\|r_{n_{2}}\right\|$. Apply Theorem 1. •
If $r_{0}=1$, then $\left\{V_{n}\right\}_{n \in \mathbb{Z}}$ is an MRA in $L^{2}(\mathbb{A})$ w.r. to the sequence of dilations $\left\{D_{t_{n}, p_{n}}\right\}_{n \in \mathbb{Z}}$ and with φ as a scaling function.

Generating Haar wavelets

Denote by $\psi_{\infty, p}^{(i)}$ and $\psi_{\text {fin }, p}^{(i)}$ the i th real and i th p-adic Haar wavelet functions. Then given $t \in\{\infty$, fin $\}$ and $p \in \mathbb{P}$,

$$
\psi_{t, p}^{(i)} \in L^{2}\left(\mathbb{Q}_{v}\right) \quad \text { for all } \quad i=1, \ldots, p-1
$$

with $v=\infty$ if $t=\infty$ and $v=p$ if $t=$ fin.

Generating Haar wavelets

Denote by $\psi_{\infty, p}^{(i)}$ and $\psi_{\text {fin }, p}^{(i)}$ the i th real and i th p-adic Haar wavelet functions. Then given $t \in\{\infty$, fin $\}$ and $p \in \mathbb{P}$,

$$
\psi_{t, p}^{(i)} \in L^{2}\left(\mathbb{Q}_{v}\right) \quad \text { for all } \quad i=1, \ldots, p-1
$$

with $v=\infty$ if $t=\infty$ and $v=p$ if $t=$ fin. Set

$$
\Psi_{t, p}=\left\{\psi_{t, p}^{(i)} \otimes \varphi_{v^{\prime}}: i=1, \ldots, p-1\right\}
$$

where $\varphi_{v^{\prime}}$ is the tensor product of φ_{w} over all w other than v.

Generating Haar wavelets

Denote by $\psi_{\infty, p}^{(i)}$ and $\psi_{\text {fin }, p}^{(i)}$ the i th real and i th p-adic Haar wavelet functions. Then given $t \in\{\infty$, fin $\}$ and $p \in \mathbb{P}$,

$$
\psi_{t, p}^{(i)} \in L^{2}\left(\mathbb{Q}_{v}\right) \text { for all } i=1, \ldots, p-1
$$

with $v=\infty$ if $t=\infty$ and $v=p$ if $t=$ fin. Set

$$
\psi_{t, p}=\left\{\psi_{t, p}^{(i)} \otimes \varphi_{v^{\prime}}: i=1, \ldots, p-1\right\}
$$

where $\varphi_{v^{\prime}}$, is the tensor product of φ_{w} over all w other than v.
Elements of the sets $\Psi_{t, p}$ are treated as generating adelic Haar wavelets. We have $\left|\Psi_{t, p}\right|=p-1$ and $\operatorname{supp}(\psi)=F$ for $\psi \in \Psi_{t, p}$.

Wavelet basis associated with a strategy

Theorem 3 For any strategy $\mathfrak{r}=\left\{r_{n}\right\}_{n \in \mathbb{Z}}$ the set of functions

$$
\Psi(\mathfrak{r})=\bigcup_{n \in \mathbb{Z}}\left\{\left\|r_{n}\right\|_{\mathbb{A}}^{1 / 2} \psi^{D_{r_{n}}, b}: \psi \in \Psi_{t_{n}, p_{n}}, b \in \mathbb{Q}\right\}
$$

forms an orthonormal basis in the Hilbert space $L^{2}(\mathbb{A})$.

Wavelet basis associated with a strategy

Theorem 3 For any strategy $\mathfrak{r}=\left\{r_{n}\right\}_{n \in \mathbb{Z}}$ the set of functions

$$
\Psi(\mathfrak{r})=\bigcup_{n \in \mathbb{Z}}\left\{\left\|r_{n}\right\|_{\mathbb{A}}^{1 / 2} \psi^{D_{r_{n}}, b}: \psi \in \Psi_{t_{n}, p_{n}}, b \in \mathbb{Q}\right\}
$$

forms an orthonormal basis in the Hilbert space $L^{2}(\mathbb{A})$.
Note. By definition any function belonging to $\Psi(\mathfrak{r})$ equals

$$
\left\|r_{n}\right\|_{\mathbb{A}}^{1 / 2} \psi\left(D_{r_{n}}(x)-b\right), \quad x \in \mathbb{A}
$$

where ψ is a generating Haar wavelet. However if $r_{0}=1$, then $D_{r_{n}}$ is the composition of $D_{t_{i}, p_{i}}$ with $0 \leq i \leq n-1$ for $n>0$, and the inverse to the composition of $D_{t_{i}, p_{i}}$ with $n \leq i \leq-1$ for $n<0$. Thus the above function can be treated as a wavelet one.

Sketch of proof

By Theorem 2 it suffices to verify that for each $n \in \mathbb{Z}$ the set

$$
\Psi_{n}(\mathfrak{r})=\left\{\left\|r_{n}\right\|_{\mathbb{A}}^{1 / 2} \psi^{D_{r n}, b}: \psi \in \Psi_{t_{n}, p_{n}}, b \in \mathbb{Q}\right\}
$$

is an orthonormal basis of the space $V_{n+1} \ominus V_{n}$.

Sketch of proof

By Theorem 2 it suffices to verify that for each $n \in \mathbb{Z}$ the set

$$
\Psi_{n}(\mathfrak{r})=\left\{\left\|r_{n}\right\|_{\mathbb{A}}^{1 / 2} \psi^{D_{r_{n}}, b}: \psi \in \Psi_{t_{n}, p_{n}}, b \in \mathbb{Q}\right\}
$$

is an orthonormal basis of the space $V_{n+1} \ominus V_{n}$. To do this it suffices to show that for $(t, p)=\left(t_{n}, p_{n}\right)$ the set

$$
\left\{\psi^{b}: \psi \in \Psi_{t, p} \cup\{\varphi\}, b \in \mathbb{Q}\right\}
$$

is an orthonormal basis of $V(t, p):=\operatorname{span}\left\{\chi_{M}: M \in P_{r(t, p}\right\}$,

Sketch of proof

By Theorem 2 it suffices to verify that for each $n \in \mathbb{Z}$ the set

$$
\Psi_{n}(\mathfrak{r})=\left\{\left\|r_{n}\right\|_{\mathbb{A}}^{1 / 2} \psi^{D_{r_{n}}, b}: \psi \in \Psi_{t_{n}, p_{n}}, b \in \mathbb{Q}\right\}
$$

is an orthonormal basis of the space $V_{n+1} \ominus V_{n}$. To do this it suffices to show that for $(t, p)=\left(t_{n}, p_{n}\right)$ the set

$$
\left\{\psi^{b}: \psi \in \Psi_{t, p} \cup\{\varphi\}, b \in \mathbb{Q}\right\}
$$

is an orthonormal basis of $V(t, p):=\operatorname{span}\left\{\chi_{M}: M \in P_{r(t, p}\right\}$, or equivalently that the set $\Psi_{t, p} \cup\{\varphi\}$ is an orthonormal basis of that space restricted to F.

Sketch of proof

By Theorem 2 it suffices to verify that for each $n \in \mathbb{Z}$ the set

$$
\Psi_{n}(\mathfrak{r})=\left\{\left\|r_{n}\right\|_{\mathbb{A}}^{1 / 2} \psi^{D_{r_{n}}, b}: \psi \in \Psi_{t_{n}, p_{n}}, b \in \mathbb{Q}\right\}
$$

is an orthonormal basis of the space $V_{n+1} \ominus V_{n}$. To do this it suffices to show that for $(t, p)=\left(t_{n}, p_{n}\right)$ the set

$$
\left\{\psi^{b}: \psi \in \Psi_{t, p} \cup\{\varphi\}, b \in \mathbb{Q}\right\}
$$

is an orthonormal basis of $V(t, p):=\operatorname{span}\left\{\chi_{M}: M \in P_{r(t, p\}}\right\}$, or equivalently that the set $\Psi_{t, p} \cup\{\varphi\}$ is an orthonormal basis of that space restricted to F.
The latter means that $\left\{\psi_{t, p}^{(i)}: i=0, \ldots p-1\right\}$ is an orthonormal basis of $\operatorname{span}\left\{\chi_{M_{j}}: j=0, \ldots p-1\right\}$ where $M_{j}=[j / p,(j+1) / p)$ if $t=\infty$ and $M_{j}=j+p \mathbb{Z}_{p}$ if $t=$ fin, which is obvious.

Papers I

围 S. Evdokimov, Haar multiresolution analysis and Haar bases on the ring of rational adeles.
ZNS POMI, 400:158-165, 2012.

