Haars over completions of \mathbb{Q} Adeles Adelic Haar over \mathbb{Q}

Haar multiresolution analysis and Haar bases on the ring of rational adeles

Sergei Evdokimov

St.Petersburg Department of Steklov Mathematical Institute Russia

International Workshop on p-Adic Methods for Modeling of Complex Systems ZiF, Bielefeld, April 18, 2013

Haars over completions of \mathbb{Q} Adeles Adelic Haar over \mathbb{O}

Outline

- Real Haar
- p-Adic Haar
- Absolute values on Q

Adeles

- Rational adele ring A
- Hilbert space L²(A)

3 Adelic Haar over Q

- Pseudo Haar MRA
- Haar MRA's
- Haar wavelet bases

= 200

Real Haar *p*-Adic Haar Absolute values on Q

Real Haar wavelet basis

For each prime *p* the system of functions

$$\{p^{n/2}\psi^{(i)}(p^nx-b), x \in \mathbb{R} : n, b \in \mathbb{Z}, i = 1, \dots, p-1\}$$

forms an orthonormal basis in the Hilbert space $L^2(\mathbb{R})$.

Real Haar *p*-Adic Haar Absolute values on Q

Real Haar wavelet basis

For each prime *p* the system of functions

$$\{p^{n/2}\psi^{(i)}(p^nx-b), x \in \mathbb{R} : n, b \in \mathbb{Z}, i = 1, \dots, p-1\}$$

forms an orthonormal basis in the Hilbert space $L^2(\mathbb{R})$. Here $\psi^{(i)} = \psi^{(i)}_{\infty,p}$ is the *i*th real Haar wavelet function:

$$\psi_{\infty,p}^{(i)}(x) = \begin{cases} \zeta^{ij}, & \text{if } \frac{j}{p} \le x < \frac{j+1}{p}, \ j = 0, \dots, p-1, \\ 0, & \text{otherwise,} \end{cases}$$

where $\zeta = \exp(2\pi\sqrt{-1}/p)$ is a primitive *p*th root of unity.

Real Haar *p*-Adic Haar Absolute values on Q

Real Haar wavelet basis

For each prime *p* the system of functions

$$\{p^{n/2}\psi^{(i)}(p^nx-b), x \in \mathbb{R} : n, b \in \mathbb{Z}, i = 1, \dots, p-1\}$$

forms an orthonormal basis in the Hilbert space $L^2(\mathbb{R})$. Here $\psi^{(i)} = \psi^{(i)}_{\infty,\rho}$ is the *i*th real Haar wavelet function:

$$\psi_{\infty,p}^{(i)}(x) = \begin{cases} \zeta^{ij}, & \text{if } \frac{j}{p} \le x < \frac{j+1}{p}, \ j = 0, \dots, p-1, \\ 0, & \text{otherwise,} \end{cases}$$

where $\zeta = \exp(2\pi\sqrt{-1}/p)$ is a primitive *p*th root of unity.

The set of translations is a discrete group isomorphic to \mathbb{Z} .

・ロト (周) (E) (E) (E) (E)

Real Haar MRA (Meyer, Mallat, 1980's)

For each *n* let us define a closed subspace of $L^2(\mathbb{R})$ by

$$V_n = \operatorname{span}\{\chi_M : M = [\frac{b}{p^n}, \frac{b+1}{p^n}), b \in \mathbb{Z}\}.$$

Real Haar MRA (Meyer, Mallat, 1980's)

For each *n* let us define a closed subspace of $L^2(\mathbb{R})$ by

$$V_n = \operatorname{span}\{\chi_M : M = \begin{bmatrix} \frac{b}{p^n}, \frac{b+1}{p^n} \end{bmatrix}, \ b \in \mathbb{Z}\}.$$

Then the sequence $\{V_n\}_{n \in \mathbb{Z}}$ forms an MRA in $L^2(\mathbb{R})$ with $\varphi = \varphi_{\infty} = \chi_{[0,1)}$ as a scaling function:

•
$$V_n \subset V_{n+1}$$
 for all n ,
• $\bigcup_{n \in \mathbb{Z}} V_n = L^2(\mathbb{R}), \quad \bigcap_{n \in \mathbb{Z}} V_n = \{0\},$

•
$$V_{n+1} = \{ f^{p,0} : f \in V_n \}$$
 for all n ,

• $\{\varphi^{1, b} : b \in \mathbb{Z}\}$ is an orthonormal basis of V_0 .

Real Haar MRA (Meyer, Mallat, 1980's)

For each *n* let us define a closed subspace of $L^2(\mathbb{R})$ by

$$V_n = \operatorname{span}\{\chi_M : M = \begin{bmatrix} \frac{b}{p^n}, \frac{b+1}{p^n} \end{bmatrix}, \ b \in \mathbb{Z}\}.$$

Then the sequence $\{V_n\}_{n \in \mathbb{Z}}$ forms an MRA in $L^2(\mathbb{R})$ with $\varphi = \varphi_{\infty} = \chi_{[0,1)}$ as a scaling function:

It follows that $L^2(\mathbb{R}) = \bigoplus_{n \in \mathbb{Z}} W_n$ where $W_n = V_{n+1} \ominus V_n$.

・ロト (周) (E) (E) (E) (E)

The field \mathbb{Q}_p of *p*-adic numbers

By definition \mathbb{Q}_p is the completion of \mathbb{Q} w.r. to the topology in which x is close to y if x - y is divided by a large power of p. Each non-zero $x \in \mathbb{Q}_p$ is uniquely represented in the form

$$x = \sum_{i=k}^{\infty} x_i p^i$$
 where $0 \le x_i \le p-1, x_k \ne 0.$

The fractional part of x is defined by $\{x\}_p = \sum_{i=k}^{-1} x_i p^i$ and the ring of *p*-adic integers by $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : \{x\}_p = 0\}.$

The field \mathbb{Q}_p is locally compact whereas the ring \mathbb{Z}_p is compact. Denote by μ_p the normalized Haar measure on \mathbb{Q}_p .

Haars over completions of ℚ Real Haar Adeles p-Adic Haar Adelic Haar over ℚ Absolute values on ℚ

p-Adic Haar wavelet basis (Kozyrev, 2002)

Similarly, in the *p*-adic case the system of functions

$$\{p^{n/2}\psi^{(i)}(p^{-n}x-b), x \in \mathbb{Q}_p : n \in \mathbb{Z}, b \in I_p, i = 1, ..., p-1\}$$

forms an orthonormal basis in the Hilbert space $L^2(\mathbb{Q}_p)$.

p-Adic Haar wavelet basis (Kozyrev, 2002)

Similarly, in the *p*-adic case the system of functions

$$\{p^{n/2}\psi^{(i)}(p^{-n}x-b), x \in \mathbb{Q}_p : n \in \mathbb{Z}, b \in I_p, i = 1, ..., p-1\}$$

forms an orthonormal basis in the Hilbert space $L^2(\mathbb{Q}_p)$. Here $\psi^{(i)} = \psi^{(i)}_{\text{fin},p}$ is the *i*th *p*-adic Haar wavelet function:

$$\psi_{\text{fin},p}^{(i)}(x) = \begin{cases} \zeta^{ij}, & \text{if } x \in j + p\mathbb{Z}_p, \ j = 0, \dots, p-1, \\ 0, & \text{otherwise,} \end{cases}$$

and $I_p = \{x = a/p^k : 0 \le a < p^k, k = 0, 1, ... \}.$

p-Adic Haar wavelet basis (Kozyrev, 2002)

Similarly, in the *p*-adic case the system of functions

$$\{p^{n/2}\psi^{(i)}(p^{-n}x-b), x \in \mathbb{Q}_p : n \in \mathbb{Z}, b \in I_p, i = 1, ..., p-1\}$$

forms an orthonormal basis in the Hilbert space $L^2(\mathbb{Q}_p)$. Here $\psi^{(i)} = \psi^{(i)}_{\text{fin},p}$ is the *i*th *p*-adic Haar wavelet function:

$$\psi_{\text{fin},p}^{(i)}(x) = \begin{cases} \zeta^{ij}, & \text{if } x \in j + p\mathbb{Z}_p, \ j = 0, \dots, p-1, \\ 0, & \text{otherwise}, \end{cases}$$

and $I_p = \{x = a/p^k : 0 \le a < p^k, k = 0, 1, ... \}.$

Note. The set of translations here is a discrete set, not a group. There are no non-trivial discrete subgroups of \mathbb{Q}_p .

・ロト (周) (E) (E) (E) (E)

p-Adic Haar MRA (Sh-Sk 2009, Al-Ev-Sk 2010)

For each *n* let us define a closed subspace of $L^2(\mathbb{Q}_p)$ by

$$V_n = \operatorname{span}\{\chi_M : M = b + p^n \mathbb{Z}_p, \ b \in \mathbb{Q}_p\}.$$

Haars over completions of ℚ Adeles Adelic Haar over ℚ Adsolute val

p-Adic Haar MRA (Sh-Sk 2009, Al-Ev-Sk 2010)

For each *n* let us define a closed subspace of $L^2(\mathbb{Q}_p)$ by

$$V_n = \operatorname{span}\{\chi_M : M = b + p^n \mathbb{Z}_p, \ b \in \mathbb{Q}_p\}.$$

Then the sequence $\{V_n\}_{n \in \mathbb{Z}}$ forms an MRA in $L^2(\mathbb{Q}_p)$ with $\varphi = \varphi_p = \chi_{\mathbb{Z}_p}$ as a scaling function:

p-Adic Haar MRA (Sh-Sk 2009, Al-Ev-Sk 2010)

For each *n* let us define a closed subspace of $L^2(\mathbb{Q}_p)$ by

$$V_n = \operatorname{span}\{\chi_M : M = b + p^n \mathbb{Z}_p, \ b \in \mathbb{Q}_p\}.$$

Then the sequence $\{V_n\}_{n \in \mathbb{Z}}$ forms an MRA in $L^2(\mathbb{Q}_p)$ with $\varphi = \varphi_p = \chi_{\mathbb{Z}_p}$ as a scaling function:

Haars over completions of ℚ Adeles Adelic Haar over ℚ Adsolute val

p-Adic Haar MRA (Sh-Sk 2009, Al-Ev-Sk 2010)

For each *n* let us define a closed subspace of $L^2(\mathbb{Q}_p)$ by

$$V_n = \operatorname{span}\{\chi_M : M = b + p^n \mathbb{Z}_p, \ b \in \mathbb{Q}_p\}.$$

Then the sequence $\{V_n\}_{n \in \mathbb{Z}}$ forms an MRA in $L^2(\mathbb{Q}_p)$ with $\varphi = \varphi_p = \chi_{\mathbb{Z}_p}$ as a scaling function:

It follows that $L^2(\mathbb{Q}_p) = \bigoplus_{n \in \mathbb{Z}} W_n$ where $W_n = V_{n+1} \ominus V_n$.

・ロト (周) (E) (E) (E) (E)

 Haars over completions of Q
 Real Haar

 Adeles
 p-Adic Haar

 Adelic Haar over Q
 Absolute values on Q

Definition

Let *K* be a field.

A function $|\cdot|: K \to \mathbb{R}$ is an absolute value or norm if

•
$$|x| \ge 0$$
 and $|x| = 0 \iff x = 0$,

•
$$|xy| = |x||y|$$
,

$$\bullet |x+y| \leq |x|+|y|.$$

We have |1| = 1 and |x| = |-x| for all $x \in K$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Definition

Let *K* be a field.

A function $|\cdot|: K \to \mathbb{R}$ is an absolute value or norm if

•
$$|x| \ge 0$$
 and $|x| = 0 \iff x = 0$,

$$\bullet |xy| = |x||y|,$$

•
$$|x + y| \le |x| + |y|$$
.

We have |1| = 1 and |x| = |-x| for all $x \in K$.

The norm is ultrametric if $|x + y| \le \max(|x|, |y|)$ for all $x, y \in K$. Otherwise it is archimedean.

In the ultrametric case every triangle in *K* is isosceles with respect to the metric $\rho(x, y) := |x - y|$.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• Trivial absolute value: |x| := 1 for all $x \neq 0$.

Sergei Evdokimov Haar multiresolution analysis on the ring of rational adeles

Haars over completions of ℚ Adeles Adelic Haar over ℚ Absolute values on ℚ

Examples

- Trivial absolute value: |x| := 1 for all $x \neq 0$.
- $K = \mathbb{R}$: the ordinary absolute value $|\cdot|_{\infty}$ on \mathbb{R}

$$|x|_{\infty} = egin{cases} x, & ext{if } x \geq 0, \ -x, & ext{otherwise}. \end{cases}$$

• $K = \mathbb{Q}_p$: the *p*-adic norm $|\cdot|_p$ on \mathbb{Q}_p

$$|x|_{p}=p^{-k}$$
 where $x=p^{k}u, \ u\in\mathbb{Z}_{p}^{ imes}.$

This norm is ultrametric.

 Haars over completions of Q
 Real Haar

 Adeles
 p-Adic Haar

 Adelic Haar over Q
 Absolute values on Q

Examples

- Trivial absolute value: |x| := 1 for all $x \neq 0$.
- $K = \mathbb{R}$: the ordinary absolute value $|\cdot|_{\infty}$ on \mathbb{R}

$$|x|_{\infty} = egin{cases} x, & ext{if } x \geq 0, \ -x, & ext{otherwise}. \end{cases}$$

• $K = \mathbb{Q}_{p}$: the *p*-adic norm $|\cdot|_{p}$ on \mathbb{Q}_{p}

$$|x|_{m{p}}=m{p}^{-k}$$
 where $x=m{p}^k u, \ u\in\mathbb{Z}_{m{p}}^{ imes}.$

This norm is ultrametric.

K = Q: the restrictions of | · |_∞ and | · |_p to Q. The fields ℝ and Q_p are completions of Q with respect to them.

・ロト (周) (E) (E) (E) (E)

Real Haar p-Adic Haar Absolute values on Q

Ostrowski's Theorem (1916)

Two absolute values $|\cdot|_1$ and $|\cdot|_2$ are equivalent if

$$\{x \in K : |x|_1 < 1\} = \{x \in K : |x|_2 < 1\}.$$

In this case $|x|_1^c = |x|_2$ for all x where c > 0.

Real Haar *p*-Adic Haar Absolute values on Q

Ostrowski's Theorem (1916)

Two absolute values $|\cdot|_1$ and $|\cdot|_2$ are equivalent if

$$\{x \in K : |x|_1 < 1\} = \{x \in K : |x|_2 < 1\}.$$

In this case $|x|_1^c = |x|_2$ for all x where c > 0.

Theorem Any non-trivial absolute value on the field \mathbb{Q} is equivalent either to the real absolute value $|\cdot|_{\infty}$ or to the *p*-adic absolute value $|\cdot|_{p}$ where *p* is a prime.

Real Haar *p*-Adic Haar Absolute values on Q

Ostrowski's Theorem (1916)

Two absolute values $|\cdot|_1$ and $|\cdot|_2$ are equivalent if

$$\{x \in K : |x|_1 < 1\} = \{x \in K : |x|_2 < 1\}.$$

In this case $|x|_1^c = |x|_2$ for all x where c > 0.

Theorem Any non-trivial absolute value on the field \mathbb{Q} is equivalent either to the real absolute value $|\cdot|_{\infty}$ or to the *p*-adic absolute value $|\cdot|_p$ where *p* is a prime.

Classes of absolute values on \mathbb{Q} are in 1-1 correspondence to the elements of $\mathbb{P} \cup \{\infty\}$ where \mathbb{P} is the set of all primes.

We refer to $\mathbb{P} \cup \{\infty\}$ as the extended set of primes.

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Definition (Chevalley, 1936)

Haars over completions of $\mathbb Q$ Adeles Adelic Haar over $\mathbb Q$

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Definition (Chevalley, 1936)

Under the adele ring \mathbb{A} we mean here the restricted direct product of the field $\mathbb{Q}_{\infty} = \mathbb{R}$ and all *p*-adic fields \mathbb{Q}_p where $p \in \mathbb{P}$ with respect to their subrings \mathbb{Z}_p , i.e. the set of all

$$x=(x_{\infty},\ldots,\,x_{
ho},\ldots)$$
 where $x_{\infty}\in\mathbb{R},\,x_{
ho}\in\mathbb{Q}_{
ho},$

such that $x_p \in \mathbb{Z}_p$ for almost all $p \in \mathbb{P}$.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Haars over completions of $\mathbb Q$ Adeles Adelic Haar over $\mathbb Q$

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Definition (Chevalley, 1936)

Under the adele ring \mathbb{A} we mean here the restricted direct product of the field $\mathbb{Q}_{\infty} = \mathbb{R}$ and all *p*-adic fields \mathbb{Q}_p where $p \in \mathbb{P}$ with respect to their subrings \mathbb{Z}_p , i.e. the set of all

$$x=(x_{\infty},\ldots,\,x_{
ho},\ldots)$$
 where $x_{\infty}\in\mathbb{R},\,x_{
ho}\in\mathbb{Q}_{
ho},$

such that $x_p \in \mathbb{Z}_p$ for almost all $p \in \mathbb{P}$.

Denote by \mathbb{A}^{\times} the multiplicative group of the ring \mathbb{A} . Then

$$x \in \mathbb{A}^{\times} \implies x_{p} \in \mathbb{Z}_{p}^{\times}$$
 for almost all $p \in \mathbb{P}$.

Thus, \mathbb{A}^{\times} is the restricted direct product of the group \mathbb{R}^{\times} and all groups \mathbb{Q}_{p}^{\times} with respect to their subgroups \mathbb{Z}_{p}^{\times} .

・ロト (周) (E) (E) (E) (E)

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Adelic topology

From the definition of $\mathbb A$ it follows that

$$\mathbb{A} = \bigcup_{S} \mathbb{A}_{S} \quad \text{with} \quad \mathbb{A}_{S} = \mathbb{Q}_{S} \times \prod_{p \notin S} \mathbb{Z}_{p}$$

where $\mathbb{Q}_{S} = \prod_{v \in S} \mathbb{Q}_{v}$ and *S* runs over all finite subsets of the set $\mathbb{P} \cup \{\infty\}$ that contain ∞ .

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Adelic topology

From the definition of \mathbbm{A} it follows that

$$\mathbb{A} = \bigcup_{S} \mathbb{A}_{S} \quad \text{with} \quad \mathbb{A}_{S} = \mathbb{Q}_{S} \times \prod_{p \notin S} \mathbb{Z}_{p}$$

where $\mathbb{Q}_{S} = \prod_{v \in S} \mathbb{Q}_{v}$ and *S* runs over all finite subsets of the set $\mathbb{P} \cup \{\infty\}$ that contain ∞ .

Since the fields \mathbb{Q}_{∞} and \mathbb{Q}_{p} are locally compact and the ring \mathbb{Z}_{p} is compact for all $p \in \mathbb{P}$, the ring \mathbb{A} is locally compact.

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Adelic topology

From the definition of $\mathbb A$ it follows that

$$\mathbb{A} = \bigcup_{S} \mathbb{A}_{S} \quad \text{with} \quad \mathbb{A}_{S} = \mathbb{Q}_{S} \times \prod_{p \notin S} \mathbb{Z}_{p}$$

where $\mathbb{Q}_{S} = \prod_{v \in S} \mathbb{Q}_{v}$ and *S* runs over all finite subsets of the set $\mathbb{P} \cup \{\infty\}$ that contain ∞ .

Since the fields \mathbb{Q}_{∞} and \mathbb{Q}_{p} are locally compact and the ring \mathbb{Z}_{p} is compact for all $p \in \mathbb{P}$, the ring \mathbb{A} is locally compact.

Convergence: $x^{(n)} \to 0$ in \mathbb{A} if and only if $x^{(n)} \in \mathbb{A}_S$ for some S and all n and $x_v^{(n)} \to 0$ for all $v \in \mathbb{P} \cup \{\infty\}$.

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Adelic topology

From the definition of $\mathbb A$ it follows that

$$\mathbb{A} = \bigcup_{S} \mathbb{A}_{S} \quad \text{with} \quad \mathbb{A}_{S} = \mathbb{Q}_{S} \times \prod_{p \notin S} \mathbb{Z}_{p}$$

where $\mathbb{Q}_{S} = \prod_{v \in S} \mathbb{Q}_{v}$ and *S* runs over all finite subsets of the set $\mathbb{P} \cup \{\infty\}$ that contain ∞ .

Since the fields \mathbb{Q}_{∞} and \mathbb{Q}_{p} are locally compact and the ring \mathbb{Z}_{p} is compact for all $p \in \mathbb{P}$, the ring \mathbb{A} is locally compact.

Convergence: $x^{(n)} \to 0$ in \mathbb{A} if and only if $x^{(n)} \in \mathbb{A}_S$ for some S and all n and $x_v^{(n)} \to 0$ for all $v \in \mathbb{P} \cup \{\infty\}$.

Adelic topology is metrizable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇

Field \mathbb{Q} as a discrete subring of \mathbb{A}

Let $x \in \mathbb{Q}$. If x = a/b, then $x \in \mathbb{Z}_p$ for all $p \in \mathbb{P}$ not dividing *b*. Therefore \mathbb{Q} can be embedded diagonally in \mathbb{A}

$$\mathbb{Q} \hookrightarrow \mathbb{A}, \qquad \mathbf{X} \mapsto (\dots, \mathbf{X}, \dots).$$

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Field \mathbb{Q} as a discrete subring of \mathbb{A}

Let $x \in \mathbb{Q}$. If x = a/b, then $x \in \mathbb{Z}_p$ for all $p \in \mathbb{P}$ not dividing *b*. Therefore \mathbb{Q} can be embedded diagonally in \mathbb{A}

$$\mathbb{Q} \hookrightarrow \mathbb{A}, \qquad \mathbf{X} \mapsto (\dots, \mathbf{X}, \dots).$$

Theorem The field \mathbb{Q} is a discrete subring of \mathbb{A} in the adelic topology and the factor \mathbb{A}/\mathbb{Q} is compact.

Field \mathbb{Q} as a discrete subring of \mathbb{A}

Let $x \in \mathbb{Q}$. If x = a/b, then $x \in \mathbb{Z}_p$ for all $p \in \mathbb{P}$ not dividing b. Therefore \mathbb{Q} can be embedded diagonally in \mathbb{A}

 $\mathbb{Q} \hookrightarrow \mathbb{A}, \qquad \mathbf{X} \mapsto (\dots, \mathbf{X}, \dots).$

Theorem The field \mathbb{Q} is a discrete subring of \mathbb{A} in the adelic topology and the factor \mathbb{A}/\mathbb{Q} is compact.

Proof. It suffices to show that the set $F = [0, 1) \times \prod_{p \in \mathbb{P}} \mathbb{Z}_p$ is a fundamental domain of \mathbb{Q} . This means that the translations of F by elements of \mathbb{Q} are pairwise disjoint and form a partition of \mathbb{A} .

Field \mathbb{Q} as a discrete subring of \mathbb{A}

Let $x \in \mathbb{Q}$. If x = a/b, then $x \in \mathbb{Z}_p$ for all $p \in \mathbb{P}$ not dividing *b*. Therefore \mathbb{Q} can be embedded diagonally in \mathbb{A}

 $\mathbb{Q} \hookrightarrow \mathbb{A}, \qquad \mathbf{X} \mapsto (\dots, \mathbf{X}, \dots).$

Theorem The field \mathbb{Q} is a discrete subring of \mathbb{A} in the adelic topology and the factor \mathbb{A}/\mathbb{Q} is compact.

Proof. It suffices to show that the set $F = [0, 1) \times \prod_{p \in \mathbb{P}} \mathbb{Z}_p$ is a fundamental domain of \mathbb{Q} . This means that the translations of F by elements of \mathbb{Q} are pairwise disjoint and form a partition of \mathbb{A} . Let $x \in \mathbb{A}$. Then $a := x - \sum_{p \in \mathbb{P}} \{x_p\}_p$ is in $\mathbb{A}_{\infty} = \mathbb{R} \times \prod_{p \in \mathbb{P}} \mathbb{Z}_p$, and hence $a - \lfloor a_{\infty} \rfloor \in F$. If $x \in F \cap \mathbb{Q}$, then $x \in \mathbb{Z}$, so x = 0.

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Product formula

For each $x \in \mathbb{A}^{\times}$ set

$$\|x\|_{\mathbb{A}} = \prod_{v \in \mathbb{P} \cup \{\infty\}} |x_v|_v = |x_{\infty}|_{\infty} \prod_{\rho \in \mathbb{P}} |x_{\rho}|_{\rho}.$$

The product is well defined because $|x_p|_p = 1$ for almost all p.
Haars over completions of \mathbb{Q} Adeles Adelic Haar over \mathbb{Q}

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Product formula

For each $x \in \mathbb{A}^{\times}$ set

$$\|x\|_{\mathbb{A}} = \prod_{\mathbf{v}\in\mathbb{P}\cup\{\infty\}} |x_{\mathbf{v}}|_{\mathbf{v}} = |x_{\infty}|_{\infty} \prod_{\mathbf{p}\in\mathbb{P}} |x_{\mathbf{p}}|_{\mathbf{p}}.$$

The product is well defined because $|x_p|_p = 1$ for almost all p. Since all local norms are multiplicative, we have

$$\|xy\|_{\mathbb{A}} = \|x\|_{\mathbb{A}} \|y\|_{\mathbb{A}}$$
 for all $x, y \in \mathbb{A}^{\times}$.

Theorem If $x \in \mathbb{Q}^{\times}$, then $||x||_{\mathbb{A}} = 1$.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Product formula

For each $x \in \mathbb{A}^{\times}$ set

$$\|x\|_{\mathbb{A}} = \prod_{\mathbf{v}\in\mathbb{P}\cup\{\infty\}} |x_{\mathbf{v}}|_{\mathbf{v}} = |x_{\infty}|_{\infty} \prod_{\mathbf{p}\in\mathbb{P}} |x_{\mathbf{p}}|_{\mathbf{p}}.$$

Rational adele ring A

The product is well defined because $|x_p|_p = 1$ for almost all p. Since all local norms are multiplicative, we have

$$\|xy\|_{\mathbb{A}} = \|x\|_{\mathbb{A}} \|y\|_{\mathbb{A}}$$
 for all $x, y \in \mathbb{A}^{\times}$.

Theorem If $x \in \mathbb{Q}^{\times}$, then $||x||_{\mathbb{A}} = 1$.

Proof. Let $x = \pm \prod_{\rho \in \mathbb{P}} p^{k_{\rho}}$ where $k_{\rho} = 0$ for almost all ρ . Then $|x|_{\infty} = \prod_{\rho \in \mathbb{P}} p^{k_{\rho}}$ and $|x|_{\rho} = p^{-k_{\rho}}$ for $\rho \in \mathbb{P}$. Thus, $||x||_{\mathbb{A}} = 1$.

▲□ → ▲ 三 → ▲ 三 → ▲□ → ● ● ●

Haars over completions of $\mathbb Q$ Adeles Adelic Haar over $\mathbb O$

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Haar measure on \mathbb{A}

Denote by $\mu_{\mathbb{A}}$ the Haar measure on \mathbb{A} normalized by $\mu_{\mathbb{A}}(F) = 1$ where $F = [0, 1) \times \prod_{p \in \mathbb{P}} \mathbb{Z}_p$. Then $\mu_{\mathbb{A}}$ equals the product of the Lebesgue measure μ_{∞} on \mathbb{R} and all *p*-adic measures μ_p on \mathbb{Q}_p .

▲□ > ▲ Ξ > ▲ Ξ > Ξ Ξ - 의۹ @

Haars over completions of $\mathbb Q$ Adeles Adelic Haar over $\mathbb Q$

Haar measure on A

Denote by $\mu_{\mathbb{A}}$ the Haar measure on \mathbb{A} normalized by $\mu_{\mathbb{A}}(F) = 1$ where $F = [0, 1) \times \prod_{\rho \in \mathbb{P}} \mathbb{Z}_{\rho}$. Then $\mu_{\mathbb{A}}$ equals the product of the Lebesgue measure μ_{∞} on \mathbb{R} and all *p*-adic measures μ_{ρ} on \mathbb{Q}_{ρ} .

Hilbert space $L^2(\mathbb{A})$

Since $\mu_v(aX) = |a|_v \mu_v(X)$ for all $v \in \mathbb{P} \cup \{\infty\}$, $a \in \mathbb{Q}_v^{\times}$, $X \subset \mathbb{Q}_v$, it follows that given $X \subset \mathbb{A}$ we have

$$\mu_{\mathbb{A}}(aX) = \|a\|_{\mathbb{A}}\mu_{\mathbb{A}}(X)$$
 for all $a \in \mathbb{A}^{\times}$.

▲□ > ▲ Ξ > ▲ Ξ > Ξ Ξ - 의۹ @

Haars over completions of $\mathbb Q$ Adeles Adelic Haar over $\mathbb Q$

Haar measure on \mathbb{A}

Denote by $\mu_{\mathbb{A}}$ the Haar measure on \mathbb{A} normalized by $\mu_{\mathbb{A}}(F) = 1$ where $F = [0, 1) \times \prod_{p \in \mathbb{P}} \mathbb{Z}_p$. Then $\mu_{\mathbb{A}}$ equals the product of the Lebesgue measure μ_{∞} on \mathbb{R} and all *p*-adic measures μ_p on \mathbb{Q}_p .

Hilbert space $L^2(\mathbb{A})$

Since $\mu_v(aX) = |a|_v \mu_v(X)$ for all $v \in \mathbb{P} \cup \{\infty\}$, $a \in \mathbb{Q}_v^{\times}$, $X \subset \mathbb{Q}_v$, it follows that given $X \subset \mathbb{A}$ we have

$$\mu_{\mathbb{A}}(aX) = \|a\|_{\mathbb{A}}\mu_{\mathbb{A}}(X)$$
 for all $a \in \mathbb{A}^{\times}$.

In particular, the product formula implies that

$$\mu_{\mathbb{A}}(aX) = \mu_{\mathbb{A}}(X) \quad ext{for all} \quad a \in \mathbb{Q}^{ imes}.$$

The measure $\mu_{\mathbb{A}}$ is regular. '

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Dense subspace of $L^2(\mathbb{A})$

For a finite set $\mathcal{S} \subset \mathbb{P} \cup \{\infty\}$ let

$$L_{\mathcal{S}} = L^2(\mathbb{Q}_{\mathcal{S}}) \otimes \mathbb{C} \varphi_{\mathcal{S}'}$$

where $\varphi_{S'} = \bigotimes_{v \notin S} \varphi_v$ with $\varphi_{\infty} = \chi_{[0,1)}$ and $\varphi_p = \chi_{\mathbb{Z}_p}$ for $p \in \mathbb{P}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Haars over completions of \mathbb{Q} Adeles Adelic Haar over \mathbb{Q}

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Dense subspace of $L^2(\mathbb{A})$

For a finite set $\mathcal{S} \subset \mathbb{P} \cup \{\infty\}$ let

$$L_{\mathcal{S}} = L^2(\mathbb{Q}_{\mathcal{S}}) \otimes \mathbb{C} \varphi_{\mathcal{S}'}$$

where $\varphi_{S'} = \bigotimes_{v \notin S} \varphi_v$ with $\varphi_{\infty} = \chi_{[0,1)}$ and $\varphi_p = \chi_{\mathbb{Z}_p}$ for $p \in \mathbb{P}$. (For example, if $S = \emptyset$, then $L_S = \mathbb{C}\varphi$ where $\varphi = \bigotimes_v \varphi_v = \chi_F$.)

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Dense subspace of $L^2(\mathbb{A})$

For a finite set $S \subset \mathbb{P} \cup \{\infty\}$ let

$$L_{\mathcal{S}} = L^2(\mathbb{Q}_{\mathcal{S}}) \otimes \mathbb{C} \varphi_{\mathcal{S}'}$$

where $\varphi_{S'} = \bigotimes_{v \notin S} \varphi_v$ with $\varphi_{\infty} = \chi_{[0,1)}$ and $\varphi_p = \chi_{\mathbb{Z}_p}$ for $p \in \mathbb{P}$. (For example, if $S = \emptyset$, then $L_S = \mathbb{C}\varphi$ where $\varphi = \bigotimes_v \varphi_v = \chi_F$.)

If *S* contains ∞ , then obviously L_S is a subspace of the space $L^2(\mathbb{A}_S) = L^2(\mathbb{Q}_S) \otimes L^2(\prod_{p \notin S} \mathbb{Z}_p).$

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Dense subspace of $L^2(\mathbb{A})$

For a finite set $S \subset \mathbb{P} \cup \{\infty\}$ let

$$L_{\mathcal{S}} = L^2(\mathbb{Q}_{\mathcal{S}}) \otimes \mathbb{C} \varphi_{\mathcal{S}'}$$

where $\varphi_{S'} = \bigotimes_{v \notin S} \varphi_v$ with $\varphi_{\infty} = \chi_{[0,1)}$ and $\varphi_p = \chi_{\mathbb{Z}_p}$ for $p \in \mathbb{P}$. (For example, if $S = \emptyset$, then $L_S = \mathbb{C}\varphi$ where $\varphi = \bigotimes_v \varphi_v = \chi_F$.)

If *S* contains ∞ , then obviously L_S is a subspace of the space $L^2(\mathbb{A}_S) = L^2(\mathbb{Q}_S) \otimes L^2(\prod_{p \notin S} \mathbb{Z}_p).$

Theorem The union of L_S over all finite *S* is dense in $L^2(\mathbb{A})$.

・ロト (周) (E) (E) (E) (E)

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Dense subspace of $L^2(\mathbb{A})$

For a finite set $\mathcal{S} \subset \mathbb{P} \cup \{\infty\}$ let

$$L_{\mathcal{S}} = L^2(\mathbb{Q}_{\mathcal{S}}) \otimes \mathbb{C} \varphi_{\mathcal{S}'}$$

where $\varphi_{S'} = \bigotimes_{v \notin S} \varphi_v$ with $\varphi_{\infty} = \chi_{[0,1)}$ and $\varphi_p = \chi_{\mathbb{Z}_p}$ for $p \in \mathbb{P}$. (For example, if $S = \emptyset$, then $L_S = \mathbb{C}\varphi$ where $\varphi = \bigotimes_v \varphi_v = \chi_F$.)

If *S* contains ∞ , then obviously L_S is a subspace of the space $L^2(\mathbb{A}_S) = L^2(\mathbb{Q}_S) \otimes L^2(\prod_{p \notin S} \mathbb{Z}_p).$

Theorem The union of L_S over all finite *S* is dense in $L^2(\mathbb{A})$.

Proof. Follows from the regularity of the measure $\mu_{\mathbb{A}}$.

・ロト (周) (E) (E) (E) (E)

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Tensor product of bases

For each $v \in \mathbb{P} \cup \{\infty\}$ let Ψ_v be an orthonormal basis in $L^2(\mathbb{Q}_v)$ such that $\varphi_v \in \Psi_v$. Set

$$\Psi = \{ \bigotimes_{\boldsymbol{\nu} \in \mathbb{P} \cup \{\infty\}} \psi_{\boldsymbol{\nu}} : \psi_{\boldsymbol{\nu}} \in \Psi_{\boldsymbol{\nu}} \text{ for all } \boldsymbol{\nu}, \ \psi_{\boldsymbol{\nu}} = \varphi_{\boldsymbol{\nu}} \text{ for almost all } \boldsymbol{\nu} \}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Tensor product of bases

For each $v \in \mathbb{P} \cup \{\infty\}$ let Ψ_v be an orthonormal basis in $L^2(\mathbb{Q}_v)$ such that $\varphi_v \in \Psi_v$. Set

$$\Psi = \{\bigotimes_{\boldsymbol{\nu} \in \mathbb{P} \cup \{\infty\}} \psi_{\boldsymbol{\nu}} : \psi_{\boldsymbol{\nu}} \in \Psi_{\boldsymbol{\nu}} \text{ for all } \boldsymbol{\nu}, \ \psi_{\boldsymbol{\nu}} = \varphi_{\boldsymbol{\nu}} \text{ for almost all } \boldsymbol{\nu}\}.$$

Theorem The set Ψ is an orthonormal basis in $L^2(\mathbb{A})$.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Rational adele ring \mathbb{A} Hilbert space $L^2(\mathbb{A})$

Tensor product of bases

For each $v \in \mathbb{P} \cup \{\infty\}$ let Ψ_v be an orthonormal basis in $L^2(\mathbb{Q}_v)$ such that $\varphi_v \in \Psi_v$. Set

$$\Psi = \{\bigotimes_{\boldsymbol{\nu} \in \mathbb{P} \cup \{\infty\}} \psi_{\boldsymbol{\nu}} : \psi_{\boldsymbol{\nu}} \in \Psi_{\boldsymbol{\nu}} \text{ for all } \boldsymbol{\nu}, \ \psi_{\boldsymbol{\nu}} = \varphi_{\boldsymbol{\nu}} \text{ for almost all } \boldsymbol{\nu}\}.$$

Theorem The set Ψ is an orthonormal basis in $L^2(\mathbb{A})$.

Proof. Obviously the set Ψ is orthonormal. Moreover, for any finite *S* it contains a basis of $L_S = \bigotimes_{v \in S} L^2(\mathbb{Q}_v) \otimes \mathbb{C}\varphi_{S'}$. So the closure of the linear span of Ψ contains the closure of the union of all spaces L_S , which equals $L^2(\mathbb{A})$ by above. •

Haars over completions of \mathbb{Q} Adeles Adelic Haar over \mathbb{Q} Pseudo Haar MRA Haar MRA's Haar wavelet bases

Adelic dilations

Sergei Evdokimov Haar multiresolution analysis on the ring of rational adeles

Adelic dilations

For $r \in \mathbb{A}^{\times}$ set

$$D_r = T^{-1} H_r T$$

where H_r and T are defined by $H_r(x) = rx$, $x \in \mathbb{A}$, and by

$$T(x) = (x_{\infty} + \{x_{\operatorname{fin}}\}, x_{\operatorname{fin}}), \quad x = (x_{\infty}, x_{\operatorname{fin}}),$$

with $\{x_{\text{fin}}\} := \sum_{p \in \mathbb{P}} \{x_p\}_p$ the fractional part of x_{fin} .

< □ > < 同 > < 三 > < 三 > 三日 > の へ ○

Adelic dilations

For $r \in \mathbb{A}^{\times}$ set

$$D_r = T^{-1} H_r T$$

where H_r and T are defined by $H_r(x) = rx$, $x \in \mathbb{A}$, and by

$$\mathcal{T}(\mathbf{x}) = (\mathbf{x}_{\infty} + \{\mathbf{x}_{\mathrm{fin}}\}, \mathbf{x}_{\mathrm{fin}}), \quad \mathbf{x} = (\mathbf{x}_{\infty}, \mathbf{x}_{\mathrm{fin}}),$$

with $\{x_{\text{fin}}\} := \sum_{p \in \mathbb{P}} \{x_p\}_p$ the fractional part of x_{fin} .

We observe that $D_r(x)_{\text{fin}} = r_{\text{fin}}x_{\text{fin}}$ for all $x \in \mathbb{A}$, and if $r_{\text{fin}} = 1$, then D_r is reduced to the homothetic transformation of $\mathbb{Q}_{\infty} = \mathbb{R}$ with coefficient r_{∞} with respect to $\{x_{\text{fin}}\}$ as an origin.

Adelic dilations

For $r \in \mathbb{A}^{\times}$ set

$$D_r = T^{-1} H_r T$$

where H_r and T are defined by $H_r(x) = rx$, $x \in \mathbb{A}$, and by

$$\mathcal{T}(\mathbf{x}) = (\mathbf{x}_{\infty} + \{\mathbf{x}_{\mathrm{fin}}\}, \mathbf{x}_{\mathrm{fin}}), \quad \mathbf{x} = (\mathbf{x}_{\infty}, \mathbf{x}_{\mathrm{fin}}),$$

with $\{x_{\text{fin}}\} := \sum_{p \in \mathbb{P}} \{x_p\}_p$ the fractional part of x_{fin} .

We observe that $D_r(x)_{\text{fin}} = r_{\text{fin}}x_{\text{fin}}$ for all $x \in \mathbb{A}$, and if $r_{\text{fin}} = 1$, then D_r is reduced to the homothetic transformation of $\mathbb{Q}_{\infty} = \mathbb{R}$ with coefficient r_{∞} with respect to $\{x_{\text{fin}}\}$ as an origin. Obviously,

$$D_1 = \operatorname{id}_{\mathbb{A}}, \quad D_r^{-1} = D_{r^{-1}}, \quad D_r D_s = D_{rs}.$$

Transformations D_r will be treated as adelic dilations.

● ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ● ●

Partitions of $\mathbb A$

For each $r \in \mathbb{A}^{\times}$ let us define a partition of \mathbb{A} by

 $P(r) = \{D_r^{-1}(M) : M \in P\}$ where $P = \{F + b : b \in \mathbb{Q}\}.$

< □ > < 同 > < 三 > < 三 > 三日 > の へ ○

Partitions of $\mathbb A$

For each $r \in \mathbb{A}^{\times}$ let us define a partition of \mathbb{A} by

$$P(r)=\{D_r^{-1}(M):\ M\in P\}$$
 where $P=\{F+b:\ b\in \mathbb{Q}\}.$

Below we set $||r|| = (..., |r_v|_v, ...)$ and for $a, b \in \mathbb{A}^{\times}$ say that a divides b if $(b/a)_{\infty} \in \mathbb{Z}$ and $(b/a)_p \in \mathbb{Z}_p$ for all $p \in \mathbb{P}$.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Partitions of \mathbb{A}

For each $r \in \mathbb{A}^{\times}$ let us define a partition of \mathbb{A} by

$$P(r)=\{D_r^{-1}(M):\ M\in P\}$$
 where $P=\{F+b:\ b\in \mathbb{Q}\}.$

Below we set $||r|| = (..., |r_v|_v, ...)$ and for $a, b \in \mathbb{A}^{\times}$ say that a divides b if $(b/a)_{\infty} \in \mathbb{Z}$ and $(b/a)_p \in \mathbb{Z}_p$ for all $p \in \mathbb{P}$.

Lemma The following statements hold:

- *P*(*s*) is a refinement of *P*(*r*) if and only if ||r|| divides ||s||,
- partition refining every partition P(r) equals the partition of A into points,
- partition that is refined by every partition P(r) equals the partition of A with the only element A.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Proof of Lemma

For each $r \in \mathbb{A}^{\times}$ set

$$P_0(r) = \{T^{-1}(M) : M \in P(r)\}.$$

Then $P_0(r)$ equals the partition of A into the sets

$$M=M_{\infty} imes \prod_{oldsymbol{
ho}\in\mathbb{P}}M_{oldsymbol{
ho}},\quad M_{oldsymbol{
ho}}=\mathbb{Z}_{oldsymbol{
ho}}$$
 for almost all $oldsymbol{
ho}$

where $M_{\infty} \subset \mathbb{R}$ is a right for $r_{\infty} > 0$ and left for $r_{\infty} < 0$ semisegment of length $|r_{\infty}|_{\infty}^{-1}$ with the ends in the set $r_{\infty}^{-1}\mathbb{Z}$, and $M_p \subset \mathbb{Q}_p$ is a coset by the group $r_p^{-1}\mathbb{Z}_p$ for $p \in \mathbb{P}$.

Haars over completions of ℚ Pseudo Haar MRA Adeles Haar MRA's Adelic Haar over ℚ Haar wavelet bases

Proof of Lemma

For each $r \in \mathbb{A}^{\times}$ set

$$P_0(r) = \{ T^{-1}(M) : M \in P(r) \}.$$

Then $P_0(r)$ equals the partition of \mathbb{A} into the sets

$$M=M_{\infty} imes \prod_{oldsymbol{p}\in\mathbb{P}}M_{oldsymbol{p}},\quad M_{oldsymbol{p}}=\mathbb{Z}_{oldsymbol{p}}$$
 for almost all $oldsymbol{p}$

where $M_{\infty} \subset \mathbb{R}$ is a right for $r_{\infty} > 0$ and left for $r_{\infty} < 0$ semisegment of length $|r_{\infty}|_{\infty}^{-1}$ with the ends in the set $r_{\infty}^{-1}\mathbb{Z}$, and $M_{p} \subset \mathbb{Q}_{p}$ is a coset by the group $r_{p}^{-1}\mathbb{Z}_{p}$ for $p \in \mathbb{P}$.

Now Lemma follows from the corresponding statemente on $P_0(r)$'s which are obvious.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Family of closed spaces in $L^2(\mathbb{A})$

For $r \in \mathbb{A}^{\times}$ let us define a closed subspace of $L^2(\mathbb{A})$ by

$$V(r) = \operatorname{span}\{\chi_M : M \in P(r)\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Family of closed spaces in $L^2(\mathbb{A})$

For $r \in \mathbb{A}^{\times}$ let us define a closed subspace of $L^{2}(\mathbb{A})$ by

$$V(r) = \operatorname{span}\{\chi_M : M \in P(r)\}.$$

Theorem 1 The following statements hold:

- $V(r) \subset V(s)$ if and only if ||r|| divides ||s||.
- $\overline{\bigcup_{r\in\mathbb{A}^{\times}}V(r)}=L^{2}(\mathbb{A}), \quad \bigcap_{r\in\mathbb{A}^{\times}}V(r)=\{0\},$
- $V(rs) = \{ f^{D_s} : f \in V(r) \}$ for all r, s.
- $\{\varphi^{D_r, b} : b \in \mathbb{Q}\}$ is an orthogonal basis of V(r) for all r.

Family of closed spaces in $L^2(\mathbb{A})$

For $r \in \mathbb{A}^{\times}$ let us define a closed subspace of $L^{2}(\mathbb{A})$ by

$$V(r) = \operatorname{span}\{\chi_M : M \in P(r)\}.$$

Theorem 1 The following statements hold:

- $V(r) \subset V(s)$ if and only if ||r|| divides ||s||.
- $\overline{\bigcup_{r\in\mathbb{A}^{\times}}V(r)}=L^{2}(\mathbb{A}), \quad \bigcap_{r\in\mathbb{A}^{\times}}V(r)=\{0\},$
- $V(rs) = \{ f^{D_s} : f \in V(r) \}$ for all r, s.
- $\{\varphi^{D_r, b} : b \in \mathbb{Q}\}$ is an orthogonal basis of V(r) for all r.

Proof. Follows from Lemma and the definitions. •

Family of closed spaces in $L^2(\mathbb{A})$

For $r \in \mathbb{A}^{\times}$ let us define a closed subspace of $L^2(\mathbb{A})$ by

$$V(r) = \operatorname{span}\{\chi_M : M \in P(r)\}.$$

Theorem 1 The following statements hold:

• $V(r) \subset V(s)$ if and only if ||r|| divides ||s||.

•
$$\overline{\bigcup_{r\in\mathbb{A}^{\times}}V(r)}=L^{2}(\mathbb{A}), \quad \bigcap_{r\in\mathbb{A}^{\times}}V(r)=\{0\},$$

•
$$V(rs) = \{ f^{D_s} : f \in V(r) \}$$
 for all r, s .

• $\{\varphi^{D_r, b} : b \in \mathbb{Q}\}$ is an orthogonal basis of V(r) for all r.

Proof. Follows from Lemma and the definitions. •

We treat the family $\{V_r\}_{r \in \mathbb{A}^{\times}}$ as the adelic pseudo Haar MRA.

・ロト (周) (E) (E) (E) (E)

Elementary adelic dilations

For $p \in \mathbb{P}$ let us define two invertible adeles by

$$r(\infty, p) = (p, ..., 1, ...), \quad r(fin, p) = (1, ..., p^{-1}, ...).$$

Then obviously, $||r(t, p)||_{\mathbb{A}} = p$ where $t \in \{\infty, \text{fin}\}$.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Elementary adelic dilations

For $p \in \mathbb{P}$ let us define two invertible adeles by

$$r(\infty, p) = (p, ..., 1, ...), \quad r(fin, p) = (1, ..., p^{-1}, ...).$$

Then obviously, $||r(t, p)||_{\mathbb{A}} = p$ where $t \in \{\infty, \text{fin}\}$. Set

$$D_{t,p} = D_{r(t,p)}$$

We call this transformation of \mathbb{A} an elementary adelic dilation.

<ロ> <四> <四> < 回> < 回> < 回> < 回> < 回</p>

Haars over completions of ℚ Pseudo Haar MRA Adeles Haar MRA's Adelic Haar over ℚ Haar wavelet base

Elementary adelic dilations

For $p \in \mathbb{P}$ let us define two invertible adeles by

$$r(\infty, p) = (p, \ldots, 1, \ldots), \quad r(\operatorname{fin}, p) = (1, \ldots, p^{-1}, \ldots).$$

Then obviously, $||r(t, p)||_{\mathbb{A}} = p$ where $t \in \{\infty, \text{fin}\}$. Set

$$D_{t,p}=D_{r(t,p)}$$

We call this transformation of \mathbb{A} an elementary adelic dilation.

If $t = \infty$, then $D_{t,p}$ is reduced to the homothetic transformation of $\mathbb{Q}_{\infty} = \mathbb{R}$ with coefficient p w.r. to $\{x_{\text{fin}}\}$ as an origin, while if t = fin, then it is reduced to the division by p on \mathbb{Q}_p and to the translation by $\{(p^{-1}x)_{\text{fin}}\} - \{x_{\text{fin}}\}$ on \mathbb{Q}_{∞} (changing the origin).

・ロト (周) (E) (E) (E) (E)

 Haars over completions of Q
 Pseudo Haar MRA

 Adeles
 Haar MRA's

 Adelic Haar over Q
 Haar wavelet bases

Strategies

Definition We say that a sequence $\mathfrak{r} = \{r_n\}_{n \in \mathbb{Z}}$ of invertible adeles is a strategy if for each $n \in \mathbb{Z}$ there exist $t_n \in \{\infty, \text{fin}\}$ and $p_n \in \mathbb{P}$ such that

- $r_{n+1}/r_n = r(t_n, p_n)$ for all $n \in \mathbb{Z}$,
- the sets $\{n \in \mathbb{Z}_{>0} : t_n = \infty\}$ and $\{n \in \mathbb{Z}_{<0} : t_n = \infty\}$ are infinite,
- for each $p \in \mathbb{P}$ the sets $\{n \in \mathbb{Z}_{>0} : t_n = \text{fin}, p_n = p\}$ and $\{n \in \mathbb{Z}_{<0} : t_n = \text{fin}, p_n = p\}$ are infinite.

Haars over completions of ℚ Pseudo Haar MRA Adeles Haar MRA's Adelic Haar over ℚ Haar wavelet bases

Strategies

Definition We say that a sequence $\mathfrak{r} = \{r_n\}_{n \in \mathbb{Z}}$ of invertible adeles is a strategy if for each $n \in \mathbb{Z}$ there exist $t_n \in \{\infty, \text{fin}\}$ and $p_n \in \mathbb{P}$ such that

- $r_{n+1}/r_n = r(t_n, p_n)$ for all $n \in \mathbb{Z}$,
- the sets $\{n \in \mathbb{Z}_{>0} : t_n = \infty\}$ and $\{n \in \mathbb{Z}_{<0} : t_n = \infty\}$ are infinite,
- for each $p \in \mathbb{P}$ the sets $\{n \in \mathbb{Z}_{>0} : t_n = \text{fin}, p_n = p\}$ and $\{n \in \mathbb{Z}_{<0} : t_n = \text{fin}, p_n = p\}$ are infinite.

The sequences $\{t_n\}$ and $\{p_n\}$ are uniquely determined by \mathfrak{r} . Conversely, \mathfrak{r} is uniquely determined by $\{t_n\}$, $\{p_n\}$ and r_0 .

・ロト (周) (E) (E) (E) (E)

 Haars over completions of ℚ
 Pseudo Haar MRA

 Adeles
 Haar MRA's

 Adelic Haar over ℚ
 Haar wavelet bases

Strategies

Definition We say that a sequence $\mathfrak{r} = \{r_n\}_{n \in \mathbb{Z}}$ of invertible adeles is a strategy if for each $n \in \mathbb{Z}$ there exist $t_n \in \{\infty, \text{fin}\}$ and $p_n \in \mathbb{P}$ such that

- $r_{n+1}/r_n = r(t_n, p_n)$ for all $n \in \mathbb{Z}$,
- the sets $\{n \in \mathbb{Z}_{>0} : t_n = \infty\}$ and $\{n \in \mathbb{Z}_{<0} : t_n = \infty\}$ are infinite,
- for each $p \in \mathbb{P}$ the sets $\{n \in \mathbb{Z}_{>0} : t_n = \text{fin}, p_n = p\}$ and $\{n \in \mathbb{Z}_{<0} : t_n = \text{fin}, p_n = p\}$ are infinite.

The sequences $\{t_n\}$ and $\{p_n\}$ are uniquely determined by \mathfrak{r} . Conversely, \mathfrak{r} is uniquely determined by $\{t_n\}$, $\{p_n\}$ and r_0 .

It is easy to see that strategies do exist.

・ロト (周) (E) (E) (E) (E)

MRA associated with a strategy

Theorem 2 For a strategy $\{r_n\}_{n\in\mathbb{Z}}$ set $V_n = V(r_n)$. Then

•
$$V_n \subset V_{n+1}$$
 for all n ,

•
$$\overline{\bigcup_{n\in\mathbb{Z}}V_n}=L^2(\mathbb{A}),\ \bigcap_{n\in\mathbb{Z}}V_n=\{0\},$$

•
$$V_{n+1} = \{ f^{D_{t_n,p_n}} : f \in V_n \}$$
 for all *n*,

•
$$\{\varphi^{D_{r_0}, b} : b \in \mathbb{Q}\}$$
 is an orthogonal basis of V_0 .

< □ > < 同 > < 三 > < 三 > 三日 > の へ ○

MRA associated with a strategy

Theorem 2 For a strategy $\{r_n\}_{n \in \mathbb{Z}}$ set $V_n = V(r_n)$. Then

•
$$V_n \subset V_{n+1}$$
 for all n ,

•
$$\overline{\bigcup_{n\in\mathbb{Z}}V_n}=L^2(\mathbb{A}), \ \bigcap_{n\in\mathbb{Z}}V_n=\{0\},$$

•
$$V_{n+1} = \{ f^{D_{t_n,p_n}} : f \in V_n \}$$
 for all *n*,

•
$$\{\varphi^{D_{r_0}, b}: b \in \mathbb{Q}\}$$
 is an orthogonal basis of V_0 .

Proof. The definition of strategy implies that $||r_n||$ divides $||r_{n+1}||$ for all *n* and given $r \in \mathbb{A}^{\times}$ there exist integers $n_1 < n_2$ such that ||r|| is divided by $||r_{n_1}||$ and divides $||r_{n_2}||$. Apply Theorem 1. •

MRA associated with a strategy

Theorem 2 For a strategy $\{r_n\}_{n\in\mathbb{Z}}$ set $V_n = V(r_n)$. Then

•
$$V_n \subset V_{n+1}$$
 for all n ,

•
$$\overline{\bigcup_{n\in\mathbb{Z}}V_n}=L^2(\mathbb{A}), \ \bigcap_{n\in\mathbb{Z}}V_n=\{0\},$$

•
$$V_{n+1} = \{ f^{D_{t_n,p_n}} : f \in V_n \}$$
 for all *n*,

•
$$\{\varphi^{D_{r_0}, b} : b \in \mathbb{Q}\}$$
 is an orthogonal basis of V_0 .

Proof. The definition of strategy implies that $||r_n||$ divides $||r_{n+1}||$ for all *n* and given $r \in \mathbb{A}^{\times}$ there exist integers $n_1 < n_2$ such that ||r|| is divided by $||r_{n_1}||$ and divides $||r_{n_2}||$. Apply Theorem 1. •

If $r_0 = 1$, then $\{V_n\}_{n \in \mathbb{Z}}$ is an MRA in $L^2(\mathbb{A})$ w.r. to the sequence of dilations $\{D_{t_n,p_n}\}_{n \in \mathbb{Z}}$ and with φ as a scaling function.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Generating Haar wavelets

Denote by $\psi_{\infty,p}^{(i)}$ and $\psi_{\text{fin},p}^{(i)}$ the *i*th real and *i*th *p*-adic Haar wavelet functions. Then given $t \in \{\infty, \text{fin}\}$ and $p \in \mathbb{P}$,

$$\psi_{t, p}^{(i)} \in L^2(\mathbb{Q}_{m{v}}) \hspace{0.1in} ext{ for all } \hspace{0.1in} i=1,...,p-1$$

with $v = \infty$ if $t = \infty$ and v = p if t = fin.

◇ @ > ▲ E > ▲ E > E E の Q @
Haars over completions of Q Adeles Adelic Haar over Q Haar wavelet bases

Generating Haar wavelets

Denote by $\psi_{\infty,p}^{(i)}$ and $\psi_{\text{fin},p}^{(i)}$ the *i*th real and *i*th *p*-adic Haar wavelet functions. Then given $t \in \{\infty, \text{fin}\}$ and $p \in \mathbb{P}$,

$$\psi_{t, p}^{(i)} \in L^2(\mathbb{Q}_{m{v}}) \hspace{0.1in} ext{ for all } \hspace{0.1in} i=1,...,p-1$$

with $v = \infty$ if $t = \infty$ and v = p if t = fin. Set

$$\Psi_{t,\boldsymbol{p}} = \{\psi_{t,\boldsymbol{p}}^{(i)} \otimes \varphi_{\mathbf{v}'}: i = 1, \dots, \boldsymbol{p} - 1\}$$

where $\varphi_{v'}$ is the tensor product of φ_{w} over all *w* other than *v*.

Haars over completions of Q Adeles Adelic Haar over Q Haar wavelet bases

Generating Haar wavelets

Denote by $\psi_{\infty,p}^{(i)}$ and $\psi_{\text{fin},p}^{(i)}$ the *i*th real and *i*th *p*-adic Haar wavelet functions. Then given $t \in \{\infty, \text{fin}\}$ and $p \in \mathbb{P}$,

$$\psi_{t,oldsymbol{p}}^{(i)}\in L^2(\mathbb{Q}_{oldsymbol{v}})$$
 for all $i=1,...,oldsymbol{p}-1$

with $v = \infty$ if $t = \infty$ and v = p if t = fin. Set

$$\Psi_{t,\boldsymbol{p}} = \{\psi_{t,\boldsymbol{p}}^{(i)} \otimes \varphi_{\mathbf{v}'}: i = 1, \dots, \boldsymbol{p} - 1\}$$

where $\varphi_{v'}$ is the tensor product of φ_{w} over all *w* other than *v*.

Elements of the sets $\Psi_{t,p}$ are treated as generating adelic Haar wavelets. We have $|\Psi_{t,p}| = p - 1$ and supp $(\psi) = F$ for $\psi \in \Psi_{t,p}$.

・ロト (周) (E) (E) (E) (E)

Wavelet basis associated with a strategy

Theorem 3 For any strategy $\mathfrak{r} = \{r_n\}_{n \in \mathbb{Z}}$ the set of functions

$$\Psi(\mathfrak{r}) = \bigcup_{n \in \mathbb{Z}} \{ \|r_n\|_{\mathbb{A}}^{1/2} \psi^{D_{r_n}, b} : \psi \in \Psi_{t_n, p_n}, b \in \mathbb{Q} \}$$

forms an orthonormal basis in the Hilbert space $L^2(\mathbb{A})$.

Wavelet basis associated with a strategy

Theorem 3 For any strategy $\mathfrak{r} = \{r_n\}_{n \in \mathbb{Z}}$ the set of functions

$$\Psi(\mathfrak{r}) = \bigcup_{n \in \mathbb{Z}} \{ \| r_n \|_{\mathbb{A}}^{1/2} \psi^{D_{r_n}, b} : \psi \in \Psi_{t_n, p_n}, b \in \mathbb{Q} \}$$

forms an orthonormal basis in the Hilbert space $L^2(\mathbb{A})$.

Note. By definition any function belonging to $\Psi(\mathfrak{r})$ equals

$$\|r_n\|_{\mathbb{A}}^{1/2}\psi(D_{r_n}(x)-b), \quad x\in\mathbb{A},$$

where ψ is a generating Haar wavelet. However if $r_0 = 1$, then D_{r_n} is the composition of D_{t_i,p_i} with $0 \le i \le n-1$ for n > 0, and the inverse to the composition of D_{t_i,p_i} with $n \le i \le -1$ for n < 0. Thus the above function can be treated as a wavelet one.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Haars over completions of ℚ Pseudo Haar MRA Adeles Haar MRA's Adelic Haar over ℚ Haar wavelet bases

Sketch of proof

By Theorem 2 it suffices to verify that for each $n \in \mathbb{Z}$ the set

$$\Psi_{\textit{n}}(\mathfrak{r}) = \{ ||\textit{r}_{\textit{n}}||_{\mathbb{A}}^{1/2} \psi^{\textit{D}_{\textit{r}_{\textit{n}}},\textit{b}} : \psi \in \Psi_{\textit{t}_{\textit{n}},\textit{p}_{\textit{n}}}, \textit{b} \in \mathbb{Q} \}$$

is an orthonormal basis of the space $V_{n+1} \ominus V_n$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Sketch of proof

By Theorem 2 it suffices to verify that for each $n \in \mathbb{Z}$ the set

$$\Psi_{\textit{n}}(\mathfrak{r}) = \{ ||\textit{r}_{\textit{n}}||_{\mathbb{A}}^{1/2} \psi^{\textit{D}_{\textit{r}_{\textit{n}}},\textit{b}} : \psi \in \Psi_{\textit{t}_{\textit{n}},\textit{p}_{\textit{n}}}, \textit{b} \in \mathbb{Q} \}$$

is an orthonormal basis of the space $V_{n+1} \ominus V_n$. To do this it suffices to show that for $(t, p) = (t_n, p_n)$ the set

$$\{\psi^{\boldsymbol{b}}: \psi \in \Psi_{\boldsymbol{t},\boldsymbol{\rho}} \cup \{\varphi\}, \, \boldsymbol{b} \in \mathbb{Q}\}$$

is an orthonormal basis of $V(t, p) := \operatorname{span}\{\chi_M : M \in P_{r(t,p)}\},\$

Sketch of proof

By Theorem 2 it suffices to verify that for each $n \in \mathbb{Z}$ the set

$$\Psi_n(\mathfrak{r}) = \{ ||r_n||_{\mathbb{A}}^{1/2} \psi^{D_{r_n}, b} : \psi \in \Psi_{t_n, p_n}, b \in \mathbb{Q} \}$$

is an orthonormal basis of the space $V_{n+1} \ominus V_n$. To do this it suffices to show that for $(t, p) = (t_n, p_n)$ the set

$$\{\psi^{\boldsymbol{b}}:\psi\in\Psi_{\boldsymbol{t},\boldsymbol{\rho}}\cup\{\varphi\},\ \boldsymbol{b}\in\mathbb{Q}\}$$

is an orthonormal basis of $V(t, p) := \text{span}\{\chi_M : M \in P_{r(t,p)}\}$, or equivalently that the set $\Psi_{t,p} \cup \{\varphi\}$ is an orthonormal basis of that space restricted to F.

Sketch of proof

By Theorem 2 it suffices to verify that for each $n \in \mathbb{Z}$ the set

$$\Psi_n(\mathfrak{r}) = \{ ||r_n||_{\mathbb{A}}^{1/2} \psi^{D_{r_n}, b} : \psi \in \Psi_{t_n, p_n}, b \in \mathbb{Q} \}$$

is an orthonormal basis of the space $V_{n+1} \ominus V_n$. To do this it suffices to show that for $(t, p) = (t_n, p_n)$ the set

$$\{\psi^{\boldsymbol{b}}:\psi\in\Psi_{\boldsymbol{t},\boldsymbol{p}}\cup\{\varphi\},\,\boldsymbol{b}\in\mathbb{Q}\}$$

is an orthonormal basis of $V(t, p) := \text{span}\{\chi_M : M \in P_{r(t,p)}\}$, or equivalently that the set $\Psi_{t,p} \cup \{\varphi\}$ is an orthonormal basis of that space restricted to F.

The latter means that $\{\psi_{t,p}^{(i)}: i = 0, \dots, p-1\}$ is an orthonormal basis of span $\{\chi_{M_j}: j = 0, \dots, p-1\}$ where $M_j = [j/p, (j+1)/p)$ if $t = \infty$ and $M_j = j + p\mathbb{Z}_p$ if t = fin, which is obvious.

Papers

Papers I

S. Evdokimov,

Haar multiresolution analysis and Haar bases on the ring of rational adeles.

ZNS POMI, 400:158–165, 2012.