General notations: We consider an algebraically closed field \mathbb{E} of characteristic zero which is either \mathbb{C} or a complete ultrametric field \mathbb{K}. We denote by $\mathcal{A}(\mathbb{E})$ the \mathbb{E}-algebra of entire functions in \mathbb{E}, by $\mathcal{M}(\mathbb{E})$ the field of meromorphic functions in \mathbb{E}, i.e. the field of fractions of $\mathcal{A}(\mathbb{E})$ and by $\mathbb{E}(x)$ the field of rational functions.

Given $a \in \mathbb{K}$ and $R>0$, we denote by
$d(a, R)$ the disk $\{x \in \mathbb{K}||x-a| \leq r\}$ and by $d\left(a, R^{-}\right)$the disk $\{x \in \mathbb{K}||x-a|<r\}$.

First topic: Zeros of the derivative of a p-adic meromorphic function

Results to due to Kamal Boussaf, Jacqueline Ojeda, JeanPaul Bézivin and A. Escassut

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathcal{A}(\mathbb{K})$. According to classical notations, we set $|f|(r)=\sup \{|f(x)|| | x \mid \leq r\}$. We know that

$$
|f|(r)=\sup _{n \in \mathbb{N}}\left|a_{n}\right| r^{n}=\lim _{|x| \rightarrow r,|x| \neq r}|f(x)| .
$$

That notation defines an absolute value on $\mathcal{A}(\mathbb{K})$ and has continuation to $\mathcal{M}(\mathbb{K})$ as
$\left|\frac{f}{g}\right|(r)=\frac{|f|(r)}{|g|(r)}$ with $f, g \in \mathcal{A}(\mathbb{K})$.
Given $f, g \in \mathcal{A}(\mathbb{I K})$, we denote by $W(f, g)$ the Wronskian of f and g.

In the paper by Kamal Boussaf, Jacqueline Ojeda and me, the following Theorems 1 and 2 are proven:
Theorem 1: Let f, g be entire functions on \mathbb{K} such that $W(f, g)$ is a non-identically zero polynomial. Then both f, g are polynomials.

Theorem 2 is an easy consequence of Theorem 1:
Theorem 2: Let f be a transcendental meromorphic function on $\mathbb{I K}$ having finitely many multiple poles. Then f^{\prime} takes every value infinitely many times.

Theorem 2 led us to the following conjecture:
Conjecture: Let f be a meromorphic function on \mathbb{K} such that f^{\prime} has finitely many zeros. Then f is a rational function. Definition and notations: Let $f \in \mathcal{M}(\mathbb{K})$. For each $r>0$, we denote by by $\theta_{f}(r)$ the number of zeros of f in $d(0, r)$, taking multiplicity into account and set $\tau_{f}(r)=\theta_{\frac{1}{f}}(r)$. Similarly, we denote by $\psi_{f}(r)$ the number of multiple zeros of f in $d(0, r)$, each counted with its multiplicity and we set $\phi_{f}(r)=\psi_{\frac{1}{f}}(r)$.

A function h from $[1,+\infty[$ to \mathbb{N} will be said to have fine upper bound if for some $d \in \mathbb{N}, h$ satisfies $h(r) \leq r^{d}$ in $[1,+\infty[$.

Theorem 3: Let f be a meromorphic function on $\mathbb{I K}$ such that, for some $d \in \mathbb{N}$, ϕ_{f} has fine upper bound. If f^{\prime} has finitely many zeros, then f is a rational function.

Corollary 1: Let f be a meromorphic function on \mathbb{K} such that, for some $d \in \mathbb{N}$, ϕ_{f} has fine upper bound. If for some $b \in \mathbb{K} f^{\prime}-b$ has finitely many zeros, then f is a rational function.

Corollary 2: Let f be a transcendental meromorphic function on \mathbb{K} such that τ_{f} has fine upper bound. Then $f^{(k)}$ takes every value in \mathbb{K} infinitely many times, for each $k \in \mathbb{N}^{*}$.

Corollary 3: Let h be a transcendental entire function on \mathbb{K} and $P \in \mathbb{K}[x]$. The differential equation $y^{\prime} h=y P$ admits no transcendental entire solution f, such that ψ_{f} has fine upper bound.

According to the p-adic Hayman conjecture, for every $n \in$ $\mathbb{N}^{*} f^{\prime} f^{n}$ takes every non-zero value infinitely many times. Here Theorem 3 has an immediate application to that conjecture in the cases $n=1$ or $n=2$ which are not yet solved, except with additional hypotheses.

Corollary 4: Let f be a meromorphic function on \mathbb{K}. Suppose that τ_{f} has fine upper bound. If $f^{\prime} f^{n}-b$ has has finitely many zeros for some $b \in \mathbb{K}$, with $n \in \mathbb{N}$ then f is a rational function.

Remark: Using Corollary 7 to study zeros of $f^{\prime}+b f^{2}$ that are not zeros of f is not so immediate, as done in Theorems 3, 4,5 [3], because of residues of f at poles of order 1 .

Theorem 4: Let f be a transcendental meromorphic function on $\mathbb{I K}$ such that θ_{f} has fine upper bound. Then for every $b \in$ $\mathbb{K}, b \neq 0, f^{\prime}-b$ has infinitely many zeros.

Corollary 5: Let f be a transcendental meromorphic function on $\mathbb{I K}$ having no residue different from 0 . If θ_{f} has fine upper bound, then f takes every value $b \in K$ infinitely many times.

Among various lemmas, we use the following:
Lemma A: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$. For each $n \in \mathbb{N}$, and for all $r \in] 0, R[$, we have

$$
\left|f^{(n)}\right|(r) \leq|n!| \frac{|f|(r)}{r^{n}}
$$

Notation: For each $n \in \mathbb{N}^{*}$, we set

$$
\lambda_{n}=\max \left\{\frac{1}{|k|}, 1 \leq k \leq n\right\} .
$$

Remark: For every $n \in \mathbb{N}^{*}$, we have $\lambda_{n} \leq n$ because $k|k| \geq$ $1 \forall k \in \mathbb{N}$. The equality holds for all n of the form p^{h}.

Second topic: Complex and p-adic meromorphic functions

 $f^{\prime} P^{\prime}(f), g^{\prime} P^{\prime}(g)$ sharing a small functionResults to due to Kamal Boussaf, Jacqueline Ojeda and A. Escassut

Now let $a \in \mathbb{K}$ and $R>0$. We denote by $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$ the \mathbb{K}-algebra of analytic functions in $d\left(a, R^{-}\right)$i.e. the $\mathbb{I K}$ algebra of power series $\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ converging in $d\left(a, R^{-}\right)$ and we denote by $\mathcal{M}\left(d\left(a, R^{-}\right)\right)$the field of meromorphic functions inside $d\left(a, R^{-}\right)$, i.e. the field of fractions of $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$. Moreover, we denote by $\mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$the \mathbb{K} - subalgebra of $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$consisting of the bounded analytic functions in $d\left(a, R^{-}\right)$, i.e. which satisfy $\sup _{n \in \mathbb{N}}\left|a_{n}\right| R^{n}<+\infty$. And we denote $n \in \mathbb{N}$
by $\mathcal{M}_{b}\left(d\left(a, R^{-}\right)\right)$the field of fractions of $\mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$. Finally, we denote by $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$the set of unbounded analytic functions in $d\left(a, R^{-}\right)$, i.e. $\mathcal{A}\left(d\left(a, R^{-}\right)\right) \backslash \mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$. Similarly, we set $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)=\mathcal{M}\left(d\left(a, R^{-}\right)\right) \backslash \mathcal{M}_{b}\left(d\left(a, R^{-}\right)\right)$.

A polynomial $P \in \mathbb{E}[X]$ is called a polynomial of uniqueness for a family of functions $\mathcal{F} \subset \mathcal{M}(\mathbb{E})$ or $\mathcal{F} \subset \mathcal{M}\left(d\left(a, R^{-}\right)\right)$ if given any two functions $f, g \in \mathcal{F}$, the equality $P(f)=P(g)$ implies $f=g$.

We say that two functions $f, g \in \mathcal{M}(\mathbb{E})$ or $\phi, \psi \in$ $\mathcal{M}\left(\left(a, R^{-}\right)\right)$share a function α, counting multiplicities if $f-\alpha$ and $g-\alpha$ have the same zeros, with the same order. Particularly, α may be a constant.

Let f, g be two meromorphic functions that belong to $\mathcal{M}(\mathbb{E})$ or $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$let $P \in \mathbb{E}[X]$ be such that $P^{\prime}(X)$ is of the form $X^{n} \prod_{j=2}^{l}\left(X-a_{j}\right)^{k_{j}}$ and assume that $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small meromorphic function α, counting multiplicities. Following many papers on this kind of problem both in complex analysis and in p-adic analysis, previously we gave general conditions on the polynomial P in order to assure that $f^{\prime} P^{\prime}(f)=g^{\prime} P^{\prime}(g)$. Next, we showed that if $n \geq \sum_{j=2}^{l} k_{j}+3$ then we have $P(f)=P(g)$. Moreover, if f, g belong to $\mathcal{M}(\mathbb{I K})$, then we can conclude $P(f)=P(g)$ when $n \geq \sum_{j=2}^{l} k_{j}+2$. Finally if P is a polynomial of uniqueness for the family of functions we consider, then we can conclude $f=g$. Here we want to propose a new condition on the polynomial P, derived from recent results in algebraic geometry, in order to prove that $P(f)=P(g)$, without assuming $n \geq \sum_{j=2}^{l} k_{j}+3$ or $n \geq \sum_{j=2}^{l} k_{j}+2$.

Our new conclusions derived from the following Theorems A and B below.

Definitions and notations: Let \mathbb{F} be an algebraically closed field of characteristic 0 , let $P, Q \in \mathbb{F}[x]$, let $a_{i}, 1 \leq i \leq l$ be the zeros of P^{\prime} of respective order k_{i} and let $b_{j}, 1 \leq j \leq h$ be the zeros of Q^{\prime} of respective order q_{j}, let $s=\operatorname{deg}(P)$ and $m=\operatorname{deg}(Q)$.
Let $F^{\prime}=\left\{a_{i} \mid 1 \leq i \leq l, \quad Q\left(b_{j}\right) \neq P\left(a_{i}\right) \forall j=1, \ldots, h\right\}$ and let $F^{\prime \prime}=\left\{b_{j} \mid 1 \leq j \leq s, P\left(a_{i}\right) \neq Q\left(b_{j}\right) \forall i=1, \ldots, l\right\}$.

Theorem A was published in Ramajunan Journal, by Ta Thi Hoai An and me.

Theorem A: Let $P, Q \in \mathbb{K}[x]$. If one of the following two statements holds,

$$
\begin{aligned}
& \sum_{a_{i} \in F^{\prime}} k_{i} \geq s-m+2 \text { (resp. } \sum_{a_{i} \in \Delta} k_{i} \geq s-m+3, \text {) } \\
& \sum_{b_{j} \in F^{\prime \prime}} q_{j} \geq 2 \text { (resp. } \sum_{b_{i} \in \Lambda} q_{j} \geq 3, \text {) }
\end{aligned}
$$

and if two meromorphic functions $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in$ $\left.\mathcal{M}\left(d\left(a, R^{-}\right)\right)\right)$) satisfy $P(f(x))=Q(g(x)), x \in \mathbb{K}$, (resp. $x \in$ $d\left(a, R^{-}\right)$) then both f and g are constant (resp. belong to $\left.\mathcal{M}_{b}\left(d\left(a, R^{-}\right)\right)\right)$).

On the field \mathbb{C}, we have results due to Ta Thi Hoai An and Nguyen Thi Ngoc Diep:

Proposition B: Let $P, Q \in \mathbb{C}[X]$ satisfy one of the two following conditions:

$$
\begin{aligned}
& \sum_{a_{i} \in F^{\prime}} k_{i} \geq s-m+3 . \\
& \sum_{b_{j} \in F^{\prime \prime}} q_{j} \geq 3
\end{aligned}
$$

Then there is no non-constant function $f, g \in \mathcal{M}(\mathbb{C})$ such that $P(f(x))-Q(g(x))=0 \forall x \in \mathbb{C}$.

Notation and definition: Henceforth, we assume that $a_{1}=$ $P\left(a_{1}\right)=0$ and that $P(X)$ is of the form $X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $n \geq 2$. The polynomial P will be said to satisfy Hypothesis (G) if $P\left(a_{i}\right)+P\left(a_{j}\right) \neq 0 \forall(i \neq j)$

Proposition 2: Let $P \in \mathbb{K}[X]$ satisfy Hypothesis (G) and $n \geq 2$ (resp. $n \geq 3$). If meromorphic functions $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$) satisfy $P(f(x))=P(g(x))+$ $C\left(C \in \mathbb{K}^{*}\right), \forall x \in \mathbb{K}$ (resp. $\left.\forall x \in d\left(a, R^{-}\right)\right)$then both f and g are constant (resp. f and g belong to $\mathcal{M}_{b}\left(d\left(a, R^{-}\right)\right)$).

Proposition 3: Let $P \in \mathbb{C}[X]$ satisfy Hypothesis (G) and $n \geq$ 3. If meromorphic functions $f, g \in \mathcal{M}(\mathbb{C})$ satisfy $P(f(x))=$ $P(g(x))+C\left(C \in \mathbb{C}^{*}\right), \forall x \in \mathbb{C}$ then both f and g are constant.

Nevanlinna functions and polynomials of uniqueness

In order to define small functions, we must briefly recall the definitions of the classical Nevanlinna theory in \mathbb{C} and in \mathbb{K}. Here, for convenience, we will use notation long ago used in p-adic analysis in order to denote counting functions.

Let \log be a real logarithm function of base >1. Given $u \in$ \mathbb{R}_{+}^{*}, we denote by $\log ^{+}$the real function defined as $\log ^{+}(u)=$ $\max (\log (u), 0)$.

Let $f \in \mathcal{M}(\mathbb{E})$ (resp. $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$). Suppose first that f has no zero and no pole at 0 . Let $r \in] 0,+\infty[$ and let $\gamma \in \mathbb{E}$ (resp. let $\gamma \in d(0, R)$). If f has a zero of order n at γ, we set $\omega_{\gamma}(h)=n$. If f has a pole of order n at γ, we put $\omega_{\gamma}(f)=-n$ and finally, if $f(\gamma) \neq 0, \infty$, we put $\omega_{\gamma}(f)=0$

We denote by $Z(r, f)$ the counting function of zeros of f in \mathbb{E} (resp. in $d\left(0, R^{-}\right)$), counting multiplicities, i.e. we set

$$
Z(r, f)=\sum_{\omega_{\gamma}(f)>0,|\gamma| \leq r} \omega_{\gamma}(f)(\log r-\log |\gamma|) .
$$

Similarly, we denote by $\bar{Z}(r, f)$ the counting function of zeros of f in \mathbb{E} (resp. in $d\left(0, R^{-}\right)$), ignoring multiplicities, and set

$$
\bar{Z}(r, f)=\sum_{\omega_{\gamma}(f)>0,|\gamma| \leq r}(\log r-\log |\gamma|) .
$$

In the same way, we set $N(r, f)=Z\left(r, \frac{1}{f}\right)$ (resp. $\bar{N}(r, f)=$ $\bar{Z}\left(r, \frac{1}{f}\right)$) to denote the counting function of poles of f in \mathbb{E}
or in $d\left(0, R^{-}\right)$), counting multiplicity (resp. ignoring multiplicity).

If f admits a zero of order s at 0 , we can make a change of origin or count the zero at 0 by adding $s \log r$ and similarly, if f admits a pole at 0 of order s, we can make a change of origin or count the pole at 0 by adding $-s \log r$.

Let $f \in \mathcal{M}(\mathbb{C})$. Given $r>0$, we set

$$
m(r, f)=\int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

and the function $T(r, f)=m(r, f)+N(r, f)$ is called the characteristic function of f.

Now, let $f \in \mathcal{M}(\mathbb{I K})$ (resp. let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$). We set $T(r, f)=\max (Z(r, f), N(r, f))$ and $T(r, f)$ is called the characteristic function of f again.

Let $f \in \mathcal{M}(\mathbb{E})$. A function $\alpha \in \mathcal{M}(\mathbb{E})$ is called a small function with respect to f, if it satisfies

$$
\lim _{r \rightarrow+\infty} \frac{T(r, \alpha)}{T(r, f)}=0
$$

We denote by $\mathcal{M}_{f}(\mathbb{E})$ the set of small meromorphic functions with respect to f in \mathbb{E} (it is easily checked that $\mathcal{M}_{f}(\mathbb{E})$ is subfield of $\mathcal{M}(\mathbb{E}))$.

Similarly, let $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$. A function $\alpha \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$ is called a small function with respect to f, if it satisfies

$$
\lim _{r \rightarrow R^{-}} \frac{T(r, \alpha)}{T(r, f)}=0
$$

We denote by $\mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right)$the set of small meromorphic functions with respect to f in $d\left(a, R^{-}\right)$(similarly, $\mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right)$ is subfield of $\left.\mathcal{M}\left(d\left(a, R^{-}\right)\right)\right)$.
Remark: For simplicity, we have kept the same notation on \mathbb{C} and on \mathbb{K} for counting functions of zeros and poles of a meromorphic function.

Now, we must examine polynomials of uniqueness in order to give some sufficient conditions to get polynomials P such that, if $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small meromorphic function, then $f=g$.

Notation: Let $P \in \mathbb{F}[x] \backslash \mathbb{F}$ and let $\Xi(P)$ be the set of zeros c of P^{\prime} such that $P(c) \neq P(d)$ for every zero d of P^{\prime} other than c. We denote by $\Phi(P)$ its cardinal.

Theorem H was first proved by Julie Wang:
Theorem H: Let $P \in \mathbb{K}[x]$ be such that P^{\prime} has exactly two distinct zeros γ_{1} of order c_{1} and γ_{2} of order c_{2}. Then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{I K})$. Moreover, if $\min \left\{c_{1}, c_{2}\right\} \geq 2$, then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$.

Remark: If $\operatorname{deg}(P)=t$ then $\Phi(P) \leq t-1$. If $\Phi(P)<l$, then $l \geq \Phi(P)+2$.

We have the following results:

Theorem J: Let $P \in \mathbb{K}[x]$.

If $\Phi(P) \geq 2$ then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$.

If $\Phi(P) \geq 3$ then P is a polynomial of uniqueness for both $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$and $\mathcal{M}(\mathbb{K})$.

If $\Phi(P) \geq 4$ then P is a polynomial of uniqueness for $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$.

Theorem L: Let $P \in \mathbb{K}[x]$ be of degree $n \geq 6$ and such that P^{\prime} only has two distinct zeros, one of them being of order 2. Then P is a polynomial of uniqueness for $\mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$.

Concerning the field \mathbb{C}, from various results due to Ta Thi Hoai An Julie Wang, Pitman Wong, Frank and Reinder and me, we have the following theorems:

Theorem M: Let $P \in \mathbb{C}[X]$ be such that P^{\prime} has exactly two distinct zeros γ_{1} of order c_{1} and γ_{2} of order c_{2} with $\min \left\{c_{1}, c_{2}\right\} \geq 2$ and $\max \left(c_{1}, c_{2}\right) \geq 3$. Then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$.

Theorem S: Let $P \in \mathbb{C}[X]$. If $\Phi(P) \geq 4$ then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$.

The following Theorem T holds both on the field \mathbb{K} and on \mathbb{C} and is useful in the proofs of Theorems 1-10.

Theorem T: Let $Q(X)=\left(X-a_{1}\right)^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}} \in \mathbb{E}[x]$ ($a_{i} \neq a_{j}, \forall i \neq j$) with $l \geq 2$ and $n \geq \max \left\{k_{2}, . ., k_{l}\right\}$ and let $k=\sum_{i=2}^{l} k_{i}$. Let $f, g \in \mathcal{M}(\mathbb{E})$ be transcendental (resp. $f, g \in$ $\mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$) such that the function $\theta=f^{\prime} Q(f) g^{\prime} Q(g)$ is a small function with respect to f and g. We have the following: If $l=2$ then n belongs to $\{k, k+1,2 k, 2 k+1,3 k+1\}$.
If $l=3$ then n belongs to $\left\{\frac{k}{2}, k+1,2 k+1,3 k_{2}-k, . ., 3 k_{l}-k\right\}$. If $l \geq 4$ then $n=k+1$.
If θ is a constant in \mathbb{K} and if $f, g \in \mathcal{M}(\mathbb{K})$ then $n=k+1$.
Remark: We don't know any pair of meromorphic functions f, g and a polynomial Q such that $f^{\prime} Q(f) g^{\prime} Q(g)$ is a small function with respect to f and g.

Sharing values problems for meromorphic functions

The problem of value sharing a small function by functions of the form $f^{\prime} P^{\prime}(f)$ was examined first when P was just of the form x^{n}. More recently, it was examined when P was a polynomial such that P^{\prime} had exactly two distinct zeros, both in complex analysis and in p-adic analysis. In p-adic analysis we have the opportunity to use the Nevanlinna theory not only in the whole field \mathbb{K} but also inside a disk $d\left(a, R^{-}\right)$. Actually solving a values sharing problem involving $f^{\prime} P^{\prime}(f), g^{\prime} P^{\prime}(g)$ requires to know polynomials of uniqueness P for meromorphic functions.

We first considered functions $f, g \in \mathcal{M}(\mathbb{I K})$ or $f, g \in$ $\mathcal{M}\left(d\left(a, R^{-}\right)\right)$and ordinary polynomials P : we only had to assume certain hypotheses on the multiplicity order of the zeros of P^{\prime} : that was published in Buletin des Sciences Mathematiques. Next we dealt with the same problem with functions
in \mathbb{C} (that just appeared in Indagationes). In those papers, we had to assume that $n \geq \sum_{j=2}^{l} k_{j}+3$ (or $n \geq \sum_{j=2}^{l} k_{j}+2$ when $f, g, \alpha \in \mathcal{M}(\mathbb{I K}))$. Here thanks to Propositions 2 and 3 , we can replace that hypothesis by Hypothesis (G).

We can now state our main theorems.
Theorem 1: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{E})$ (resp. for $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$) satisfying Hypothesis (G). Let

$$
P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}
$$

with $b \in \mathbb{E}^{*}, l \geq 2, k_{i} \geq k_{i+1}, 2 \leq i \leq l-1$ and let $k=$ $\sum_{i=2}^{l} k_{i}$. Suppose P satisfies the following conditions:

$$
\begin{aligned}
& n \geq 10+\max \left(0,5-k_{2}\right)+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right) \\
& \text { if } l=2, \text { then } n \neq k, k+1,2 k, 2 k+1,3 k+1, \\
& \text { if } l=3, \text { then } n \neq \frac{k}{2}, k+1,2 k+1,3 k_{i}-k \forall i=2,3, \\
& \text { if } l \geq 4, \text { then } n \neq k+1 . \\
& \text { Let } f, g \in \mathcal{M}(\mathbb{E})\left(\text { resp. } f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)\right) \text {be tran- }
\end{aligned}
$$ scendental and let $\alpha \in \mathcal{M}_{f}(\mathbb{I K}) \cap \mathcal{M}_{g}(\mathbb{I K})\left(\right.$ resp. $\alpha \in \mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right) \cap$ $\mathcal{M}_{g}\left(d\left(a, R^{-}\right)\right)$) be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

By Theorem J, we have Corollary 1.1:

Corollary 1.1 Let $P \in \mathbb{K}[x]$ satisfy $\Phi(P) \geq 3$ and Hypothesis (G), let $P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $b \in \mathbb{K}^{*}, l \geq 3$, $k_{i} \geq k_{i+1}, 2 \leq i \leq l-1$ and let $k=\sum_{i=2}^{l} k_{i}$. Suppose P satisfies the following conditions:

$$
n \geq 10+\max \left(0,5-k_{2}\right)+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right)
$$

if $l=3$, then $n \neq \frac{k}{2}, k+1,2 k+1,3 k_{i}-k \forall i=2,3$,
if $l \geq 4$, then $n \neq k+1$. Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_{f}(\mathbb{K}) \cap \mathcal{M}_{g}(\mathbb{K})$ be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Example: Let

$$
\begin{gathered}
P(X)=\frac{X^{20}}{20}-\frac{X^{19}}{19}-\frac{4 X^{18}}{18}+\frac{4 X^{17}}{17} \\
+\frac{6 X^{16}}{16}-\frac{6 X^{15}}{15}-\frac{4 X^{14}}{14}+\frac{4 X^{13}}{13}+\frac{X^{12}}{12}-\frac{X^{11}}{11}
\end{gathered}
$$

We can check that $P^{\prime}(X)=X^{10}(X-1)^{5}(X+1)^{4}$ and

$$
\begin{gathered}
P(0)=0, P(1)=\sum_{j=0}^{4} C_{4}^{j}(-1)^{j}\left(\frac{1}{10+2 j}-\frac{1}{9+2 j}\right), \\
P(-1)=-\sum_{j=0}^{4} C_{4}^{j}\left(\frac{1}{10+2 j}+\frac{1}{9+2 j}\right)
\end{gathered}
$$

Consequently, we have $\Phi(P)=3$ and we check that Hypothesis (G) is satisfied. Now, let $f, g \in \mathcal{M}(\mathbb{I K})$ be transcendental and let $\alpha \in \mathcal{M}_{f}(\mathbb{I K}) \cap \mathcal{M}_{g}(\mathbb{I K})$ be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Remark: In that example, we have $n=10, k=9$. Applying our previous work, a conclusion would have required $n \geq k+$ $2=11$.

Corollary 1.2 Let $P \in \mathbb{K}[X]$ satisfy $\Phi(P) \geq 4$ and Hypothesis (G), let $P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $b \in \mathbb{K}^{*}, k_{i} \geq$ $k_{i+1}, 2 \leq i \leq l-1$ and let $k=\sum_{i=2}^{l} k_{i}$. Suppose P satisfies the following conditions:

$$
n \geq 10+\max \left(0,5-k_{2}\right)+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right)
$$

$$
n \neq k+1
$$

Let $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$and let $\alpha \in \mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right) \cap$ $\mathcal{M}_{g}\left(d\left(a, R^{-}\right)\right)$be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Corollary 1.3 Let $P \in \mathbb{C}[X]$ satisfy $\Phi(P) \geq 4$ and $H y$ pothesis (G), let $P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $b \in \mathbb{K}^{*}, k_{i} \geq$ $k_{i+1}, 2 \leq i \leq l-1$ and let $k=\sum_{i=2}^{l} k_{i}$. Suppose P satisfies the following conditions:

$$
n \geq 10+\max \left(0,5-k_{2}\right)+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right)
$$

$$
n \neq k+1
$$

Let $f, g \in \mathcal{M}(\mathbb{C})$ and let $\alpha \in \mathcal{M}_{f}(\mathbb{C}) \cap \mathcal{M}_{g}(\mathbb{C})$ be nonidentically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Example: Let

$$
\begin{aligned}
P(X)=\frac{X^{24}}{24} & -\frac{10 X^{23}}{23}+\frac{36 X^{22}}{22}-\frac{40 X^{21}}{21}-\frac{74 X^{20}}{20}+\frac{226 X^{19}}{19} \\
& -\frac{84 X^{18}}{18}-\frac{312 X^{17}}{17}+\frac{321 X^{16}}{16}+\frac{88 X^{15}}{15} \\
& -\frac{280 X^{14}}{14}+\frac{48 X^{13}}{13}+\frac{80 X^{12}}{12}-\frac{32 X^{11}}{11}
\end{aligned}
$$

We can check that $P^{\prime}(X)=X^{10}(X-2)^{5}(X+1)^{4}(X-1)^{4}$. Next, we have $P(2)<-134378, \quad P(1) \in]-2,11 ;-2,10[, \quad P(-1) \in$] 2,$18 ; 2,19$. Therefore, $P(0), P(1), P(-1), P(2)$ are all distinct, hence $\Phi(P)=4$. Moreover, Hypothesis (G) is satisfied.

Now, let $f, g \in \mathcal{M}(\mathbb{I K})$ (resp. let $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$, resp. let $f, g \in \mathcal{M}(\mathbb{C})$) and let $\alpha \in \mathcal{M}(\mathbb{I K})$ (resp. let $\alpha \in$ $\mathcal{M}\left(d\left(a, R^{-}\right)\right)$, resp. let $\left.\alpha \in \mathcal{M}(\mathbb{C})\right)$ be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Remark: In that example, we have $n=10, k=13$. Applying Theorem 4 in the paper in Bulletin des Sciences or Theorem 1 in the paper in Indagationes, a conclusion would have required $n \geq k+3=16$.

When $l=2$, Hypothesis (G) is automatically satisfied. So, by Theorem H we also have Corollary 1.4.

And by Theorem M we also have Corollary 1.4
Corollary 1.4 Let $P \in \mathbb{C}[X]$ be such that P^{\prime} is of the form $b X^{n}\left(X-a_{2}\right)^{k}$ with $\min (k, n) \geq 2$ and $\max (n, k) \geq 3$. Suppose that P satisfies the further conditions:
$n \geq 10+\max (0,5-k)$,
$n \neq k+1,2 k, 2 k+1,3 k+1$.
Let $f, g \in \mathcal{M}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{M}_{f}(\mathbb{C}) \cap$ $\mathcal{M}_{g}(\mathbb{C})$ be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Remark: Thanks to Corollary 1.4, we can take $k=8, n=10$ which we couldn't do in the paper in Indagationes.

Example: Let $P(X)=\frac{X^{6}}{6}-\frac{2 X^{5}}{5}+\frac{X^{4}}{4}$. Then $P^{\prime}(X)=$ $X^{3}(X-1)^{2}$.

Given $f, g \in \mathcal{M}(\mathbb{C})$ transcendental such that $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small function $\alpha \in \mathcal{M}(\mathbb{C})$ C.M., we have $f=g$.

Theorem 2: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ satisfying Hypothesis (G), let
$P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $b \in \mathbb{K}^{*}, l \geq 2, k_{i} \geq k_{i+1}, 2 \leq$
$i \leq l-1$ and let $k=\sum_{i=2}^{l} k_{i}$. Suppose P satisfies the following conditions:
$n \geq 9+\max \left(0,5-k_{2}\right)+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right)$,
if $l=2$, then $n \neq k, k+1,2 k, 2 k+1,3 k+1$,
if $l=3$, then $n \neq \frac{k}{2}, k+1,2 k+1,3 k_{i}-k \forall i=2,3$,
if $l \geq 4$, then $n \neq k+1$.
Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Corollary 2.1 Let $P \in \mathbb{K}[X]$ satisfy $\Phi(P) \geq 3$ and Hypothesis (G), let $P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $b \in \mathbb{K}^{*}, k_{i} \geq$ $k_{i+1}, 2 \leq i \leq l-1$ and let $k=\sum_{i=2}^{l} k_{i}$. Suppose P satisfies the following conditions:

$$
n \geq 9+\max \left(0,5-k_{2}\right)+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right)
$$

if $l=3$, then $n \neq \frac{k}{2}, k+1,2 k+1,3 k_{i}-k \forall i=2,3$.
if $l \geq 4$, then $n \neq k+1$.
Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

When α is a constant and $\mathbb{E}=\mathbb{K}$, we can simplify the conditions on n and k,
Theorem 3: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{I K})$ satisfying Hypothesis (G), let
$P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $b \in \mathbb{K}^{*}, l \geq 2, k_{i} \geq k_{i+1}, 2 \leq$
$i \leq l-1$ and let $k=\sum_{i=2}^{l} k_{i}$. Suppose P satisfies the following conditions:

$$
n \geq 9+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right)+\max \left(0,5-k_{2}\right)
$$

$$
n \neq k+1
$$

Let $f, g \in \mathcal{M}(\mathbb{I K})$ be transcendental and let α be a non-zero constant. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.
Remark: In Theorem 3 of the paper in Indagationes, we obtained $n \geq k+2$. Here we just have $n \neq k+1$ instead.

Corollary 3.1 Let $P \in \mathbb{K}[X]$ satisfy $\Phi(P) \geq 3$ and Hypothesis (G), let $P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $b \in \mathbb{K}^{*}, k_{i} \geq$ $k_{i+1}, 1 \leq i \leq l-1$ and let $k=\sum_{i=2}^{l} k_{i}$. Suppose P satisfies the following conditions:

$$
n \geq 9+\max \left(0,5-k_{2}\right)+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right)
$$

$$
n \neq k+1
$$

Let $f, g \in \mathcal{M}(\mathbb{I K})$ be transcendental and let α be a non-zero constant. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

And by Theorem A, we have Corollary 3.2
Corollary 3.2 Let $P \in \mathbb{K}[X]$ be such that P^{\prime} is of the form $b X^{n}\left(X-a_{2}\right)^{k}$ with $k \geq 2$ and with $b \in \mathbb{K}^{*}$ and $k \leq n$. Suppose P satisfies the following conditions:
$n \geq 9+\max (0,5-k)$,
$n \neq k+1$,
Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Remark: In Corollary 3.2 of the paper published in Bulletin des Sciences, we obtained $n \geq k+2$ (with an additional condition that said $n \neq 2 k+1,3 k+1$ but actually this is useless and just comes from a misprint). So, here we have an improvement with the hypothesis $n \neq k+1$ instead of $n \geq k+2$. Actually, since $k \leq n$, we obtain the additional hypothesis $n=k$.

Example: Let

$$
\begin{gathered}
P(X)=\frac{X^{19}}{19}-\frac{X^{18}}{18}-\frac{4 X^{17}}{17}+\frac{4 X^{16}}{16}+\frac{6 X^{15}}{15}-\frac{6 X^{14}}{14}-\frac{4 X^{13}}{13} \\
+\frac{4 X^{12}}{12}+\frac{X^{11}}{11}-\frac{X^{10}}{10}
\end{gathered}
$$

We can check that $P^{\prime}(X)=X^{9}(X-1)^{5}(X+1)^{4}$ and

$$
\begin{gathered}
P(0)=0, P(1)=\sum_{j=0}^{4} C_{4}^{j}(-1)^{j}\left(\frac{1}{9+2 j}-\frac{1}{8+2 j}\right) \\
P(-1)=-\sum_{j=0}^{4} C_{4}^{j}\left(\frac{1}{9+2 j}+\frac{1}{8+2 j}\right)
\end{gathered}
$$

Consequently, we can check that $\Phi(P)=3$ and that Hypothesis (G) is satisfied. Now, let $f, g \in \mathcal{M}(\mathbb{I K})$ be transcendental and let $\alpha \in \mathbb{K}^{*}$. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

For memory, here we can recall and summarize the following Theorems 4,5,6, 7 and Corollaries 4.1 and 5.1. Theorem 4 is partially given in [4] and partilally given in [5]. Theorem 5 is given in [4]. Theorems 6 is given in [4] and Theorem 7 is given in [5]. We can not improve them since the inequality $n \geq k+3$ is satisfied in each statement.
Theorem 4: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{E})$ (resp. for $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$) satisfying Hypothesis (G). Let P^{\prime} be of the form $b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)$ with $l \geq 3, b \in \mathbb{K}^{*}$, satisfying: $n \geq l+10$.
Let $f, g \in \mathcal{M}(\mathbb{E})$ be transcendental (resp. $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$) and let $\alpha \in \mathcal{M}_{f}(\mathbb{I K}) \cap \mathcal{M}_{g}(\mathbb{I K}) \quad\left(\right.$ resp. $\alpha \in \mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right) \cap$ $\mathcal{M}_{g}\left(d\left(a, R^{-}\right)\right)$be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Corollary 4.1 Let $P \in \mathbb{K}[X]$ satisfy $\Phi(P) \geq 3($ resp. $\Phi(P) \geq$ 4 and be such that P^{\prime} is of the form $b X^{n} \prod_{i=2}\left(X-a_{i}\right)$ with $l \geq 3$ (resp. $l \geq 4$), $b \in \mathbb{K}^{*}$, satisfying $n \geq l+10$.
Let $f, g \in \mathcal{M}(\mathbb{I K})$ be transcendental (resp. let $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$) and let $\alpha \in \mathcal{M}_{f}(\mathbb{I K}) \cap \mathcal{M}_{g}(\mathbb{I K}) \quad\left(\right.$ resp. $\alpha \in \mathcal{M}_{f}\left(d\left(a, R^{-}\right)\right) \cap$ $\mathcal{M}_{g}\left(d\left(a, R^{-}\right)\right)$be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Theorem 5: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ such that P^{\prime} is of the form
$P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)$ with $l \geq 3, b \in \mathbb{K}^{*}$ satisfying $n \geq l+9$.
Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function or a non-zero constant. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.
Corollary 5.1 Let $P \in \mathbb{K}[X]$ be such that $\Phi(P) \geq 3$ and be of the form
$P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)$ with $l \geq 3, b \in \mathbb{K}^{*}$ satisfying $n \geq l+9$.
Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function or a non-zero constant. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Remark: In Theorems 4 and 5 and Corollaries 4.1 and 5.1, it is useless to specify $n \neq k+1$ and if $l=3, n \neq \frac{k}{2}, k+$ $1,2 k+1,3 k_{i}-k \ldots$ because these condition are automaticaly satisfied due to the hypotheses $l n \geq l+9$ and $k_{i}=1 \forall i$.

Theorem 6: Let $f, g \in \mathcal{M}(\mathbb{E})$ be transcendental and let $\alpha \in \mathcal{M}_{f}(\mathbb{E}) \cap \mathcal{M}_{g}(\mathbb{E})$ be non-identically zero. Let $a \in \mathbb{K} \backslash\{0\}$. If $f^{\prime} f^{n}(f-a)$ and $g^{\prime} g^{n}(g-a)$ share the function α C.M. and if $n \geq 12$, then either $f=g$ or there exists $h \in \mathcal{M}(\mathbb{E})$ such that $f=\frac{a(n+2)}{n+1}\left(\frac{h^{n+1}-1}{h^{n+2}-1}\right) h$ and $g=\frac{a(n+2)}{n+1}\left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)$.
Moreover, if $\mathbb{E}=\mathbb{K}$ and if α is a constant or a Moebius function, then the conclusion holds whenever $n \geq 11$.

Inside an open disk, we have a version similar to the general case in the whole field.
Theorem 7: Let $f, g \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right.$), and let
$\alpha \in \mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right) \cap \mathcal{M}_{g}\left(d\left(0, R^{-}\right)\right)$be non-identically zero. Let $a \in \mathbb{I K} \backslash\{0\}$. If $f^{\prime} f^{n}(f-a)$ and $g^{\prime} g^{n}(g-a)$ share the function α C.M. and $n \geq 12$, then either $f=g$ or there exists $h \in$ $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$such that $f=\frac{a(n+2)}{n+1}\left(\frac{h^{n+1}-1}{h^{n+2}-1}\right) h$ and $g=$ $\frac{a(n+2)}{n+1}\left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)$.

Remark: As noticed in [4], in Theorems 7 and 8, the second conclusion does occur. Indeed, let $h \in \mathcal{M}(\mathbb{I K})$ (resp. let $h \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$). Now, let us precisely define f and g as: $g=\left(\frac{n+2}{n+1}\right)\left(\frac{h^{n+1)}-1}{h^{n+2}-1}\right)$ and $f=h g$. Then we can see that the polynomial $P(y)=\frac{1}{n+2} y^{n+2}-\frac{1}{n+1} y^{n+1}$ satisfies $P(f)=P(g)$, hence $f^{\prime} P^{\prime}(f)=g^{\prime} P^{\prime}(g)$, therefore $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ trivially share any function.

Sharing values problems for analytic functions

First we can improve results given in Bulletin des Sciences concerning p-adic analytic functions. In the paper given for Proceedings of the 12 th Conference on p-adic Functional Analysis we gave the following theorem 8:

Theorem 8: Let $P(X) \in \mathbb{K}[X]$ be a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$ (resp. for $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$), let $P^{\prime}(X)=\prod_{i=1}^{l}\left(X-a_{i}\right)^{k_{i}}$ and let $f, g \in \mathcal{A}(\mathbb{K})$ be transcendental (resp. let $f, g \in \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$) such that $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small function $\alpha \in$ $\mathcal{A}_{f}(\mathbb{K}) \cap \mathcal{A}_{g}(\mathbb{K})\left(\right.$ resp. $\left.\alpha \in \mathcal{A}_{f}\left(d\left(, R^{-}\right)\right) \cap \mathcal{A}_{g}\left(d\left(a, R^{-}\right)\right)\right)$. If $\sum_{i=1}^{l} k_{i} \geq 2 l+2$ then $f=g$. Moreover, if f, g belong to $\mathcal{A}(\mathbb{K})$, if α is a constant and if $\sum_{i=1}^{l} k_{i} \geq 2 l+1$ then $f=g$.

Corollary 8.1: Let $P(X) \in \mathbb{K}[X]$ be such that $\Phi(P) \geq 2$, let $P^{\prime}(X)=\prod_{i=1}^{l}\left(X-a_{i}\right)^{k_{i}}$ and let $f, g \in \mathcal{A}(\mathbb{K})$ be transcendental such that $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small function $\alpha \in \mathcal{A}_{f}(\mathbb{K}) \cap \mathcal{A}_{g}(\mathbb{K})$. If $\sum_{i=1}^{l} k_{i} \geq 2 l+2$ then $f=g$. Moreover, if α is a constant and if $\sum_{i=1}^{l} k_{i} \geq 2 l+1$ then $f=g$.

Example: Let \mathcal{E} be the algebraic equation:
$X^{14}\left(\frac{1}{14}-\frac{1}{13}\right)-X^{12}\left(\frac{1}{12}-\frac{1}{11}\right)-\left(\frac{1}{14}-\frac{1}{13}\right)+\frac{1}{12}-\frac{1}{11}=0$
and let $c \in \mathbb{K}$ be a solution of \mathcal{E}. Let

$$
P(X)=\frac{X^{14}}{14}-\frac{c X^{13}}{13}-\frac{X^{12}}{12}+\frac{c X^{11}}{11}
$$

Then we can check that $P^{\prime}(X)=X^{10}(X-1)(X+1)(X-c)$, $P(1)=P(c) \neq 0$ and that $P(1) \neq 0, P(-1) \neq 0, P(1)+$ $P(-1)=\frac{1}{7}-\frac{1}{6}$, and $P(-1)-P(1)=2 c\left(\frac{1}{11}-\frac{1}{13}\right)$, hence $P(-1) \neq P(c)$. Consequently, $\Phi(P)=2$. Consequently, we can apply Corollary 8.1 and show that if $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small function $\alpha \in \mathcal{A}_{f}(\mathbb{K}) \cap \mathcal{A}_{g}(\mathbb{K})$, then $f=g$.

Remark: Recall Hypothesis (F) due to H. Fujimoto. A polynomial Q is said to satisfy Hypothesis (F) if the restriction of Q to the set of zeros of Q^{\prime} is injective. In the last example, we may notice that Hypothesis (F) is not satisfied by P.

Corollary 8.2: Let $P(X) \in \mathbb{K}[X]$ be such that $\Phi(P) \geq 3$, let $P^{\prime}(X)=\prod_{i=1}^{l}\left(X-a_{i}\right)^{k_{i}}$ and let $f, g \in \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$be such that $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small function $\alpha \in$ $\mathcal{A}_{f}\left(d\left(a, R^{-}\right)\right) \cap \mathcal{A}_{g}\left(d\left(a, R^{-}\right)\right)$. If $\sum_{i=1}^{l} k_{i} \geq 2 l+2$ then $f=g$.

Corollary 8.3: Let $P(X) \in \mathbb{K}[X]$ be such that $\Phi(P) \geq 2$, (resp. $\Phi(P) \geq 3$) be such that $P^{\prime}(X)=X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)$ with $l \geq 3$ and let $f, g \in \mathcal{A}(\mathbb{K})$ (resp. $f, g \in \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$) be such that $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small function $\alpha \in \mathcal{A}_{f}(\mathbb{K}) \cap$ $\mathcal{A}_{g}(\mathbb{K}) \quad\left(\right.$ resp. $\left.\alpha \in \mathcal{A}_{f}\left(d\left(a, R^{-}\right)\right) \cap \mathcal{A}_{g}\left(d\left(a, R^{-}\right)\right)\right)$. If $n \geq l+3$ then $f=g$. Moreover, if f, g belong to $\mathcal{A}(\mathbb{K})$, if α is a constant and if $n \geq l+2$ then $f=g$.

Concerning complex analytic functions in \mathbb{C}, we can improve previous results.
Theorem 9: Let P be a polynomial of uniqueness for $\mathcal{A}(\mathbb{C})$ satisfying Hypothesis (G), let
$P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $b \in \mathbb{C}^{*}, l \geq 2, k_{i} \geq k_{i+1}, 2 \leq$
$i \leq l-1$ and let $k=\sum_{i=2}^{l} k_{i}$. Suppose P satisfies $n \geq 5+$ $\max \left(0,5-k_{2}\right)+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right)$

Let $f, g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_{f}(\mathbb{C}) \cap$ $\mathcal{A}_{g}(\mathbb{C})$ be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

By Proposition 3, we have Corollary 9.1:

Corollary 9.1 Let $P \in \mathbb{C}[X]$ satisfy satisfying Hypothesis (G), let $P^{\prime}=b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)^{k_{i}}$ with $b \in \mathbb{C}^{*}, k_{i} \geq k_{i+1}, 1 \leq$ $i \leq l-1$ and let $k=\sum_{i=2}^{l} k_{i}$. Suppose P satisfies
$n \geq 5+\max \left(0,5-k_{2}\right)+\sum_{i=3}^{l} \max \left(0,4-k_{i}\right),$,
Let $f, g \in \mathcal{M}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{M}_{f}(\mathbb{C}) \cap$ $\mathcal{M}_{g}(\mathbb{C})$ be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

And by Proposition 2 we also have Corollary 9.2
Corollary 9.2 Let $P \in \mathbb{C}[X]$ be such that P^{\prime} is of the form $b X^{n}(X-a)^{k}$ with $\min (k, n) \geq 2$ and $\max (n, k) \geq 3$. Suppose that P satisfies $n \geq 5+\max (0,5-k)$,

Let $f, g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_{f}(\mathbb{C}) \cap$ $\mathcal{A}_{g}(\mathbb{C})$ be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Example: Let

$$
P(X)=\frac{X^{11}}{11}+\frac{5 X^{10}}{10}+\frac{10 X^{9}}{9}+\frac{10 X^{8}}{8}+\frac{5 X^{7}}{7}+\frac{X^{6}}{6} .
$$

Then $P^{\prime}(X)=X^{5}(X+1)^{5}$. We can apply Corollary 9.2: given $f, g \in \mathcal{A}(\mathbb{C})$ transcendental such that $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small function $\alpha \in \mathcal{M}(\mathbb{C})$ C.M., we have $f=g$.

Remark: If we had applied Theorem 1 in the paper in Indagationes, with $k=5$, we should have taken $n \geq k+2$, hence $n \geq 7$.

When all k_{i} are equal to 1 , we can obtain a better formulation:
Theorem 10: Let P be a polynomial of uniqueness for $\mathcal{A}(\mathbb{C})$ satisfying Hypothesis (G), such that P^{\prime} is of the form
$b X^{n} \prod^{l}\left(X-a_{i}\right)$ with $l \geq 3, b \in \mathbb{C}^{*}$, satisfying $n \geq l+5$.
$i=2$
Let $f, g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_{f}(\mathbb{C}) \cap \mathcal{A}_{g}(\mathbb{C})$ be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

By Proposition 3, we have Corollary 10.1:
Corollary 10.1 Let $P \in \mathbb{C}[X]$ satisfy $\Phi(P) \geq 4$ and satisfy Hypothesis (G) and be such that P^{\prime} is of the form $b X^{n} \prod_{i=2}^{l}\left(X-a_{i}\right)$ and $b \in \mathbb{C}^{*}$, satisfying $n \geq l+5$.
Let $f, g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_{f}(\mathbb{C}) \cap \mathcal{A}_{g}(\mathbb{C})$ be non-identically zero. If $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share α C.M., then $f=g$.

Example: Let $P(x)=\frac{X^{13}}{13}-\frac{2 X^{12}}{12}-\frac{X^{11}}{11}+\frac{2 X^{10}}{10}$. Then $P^{\prime}(X)=X^{9}(X-1)(X+1)(X-2)$. We check that:
$P(0)=0, \quad P(1)=\frac{1}{13}-\frac{2}{12}-\frac{1}{11}+\frac{2}{10}$,
$P(-1)=\frac{1}{13}+\frac{2}{12}-\frac{1}{11}-\frac{2}{10} \neq 0, P(1)$. Further, we notice that and $|P(1)|<1,|P(-1)|<1$.
Finally, $P(2)=\frac{2^{13}}{13}-\frac{2^{13}}{12}-\frac{2^{11}}{11}+\frac{2^{11}}{10}=-\frac{72704}{2145}>33$ hence $P(2) \neq 0, P(1), P(-1)$. Then $\Phi(P)=4$.

So, P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$ and it clearly satisfies Hypothesis (G). Moreover, we have $n=9, l=$ 4 , so we can apply Corollary 10.1. Given $f, g \in \mathcal{A}(\mathbb{C})$ transcendental such that $f^{\prime} P^{\prime}(f)$ and $g^{\prime} P^{\prime}(g)$ share a small function $\alpha \in \mathcal{A}(\mathbb{C})$ C.M., we have $f=g$.

