
General notations: We consider an algebraically closed field
IE of characteristic zero which is either lC or a complete ultra-
metric field IK. We denote by A(IE) the IE-algebra of entire

functions in IE, by M(IE) the field of meromorphic functions

in IE, i.e. the field of fractions of A(IE) and by IE(x) the field
of rational functions.

Given a ∈ IK and R > 0, we denote by

d(a,R) the disk {x ∈ IK | |x− a| ≤ r} and by

d(a,R−) the disk {x ∈ IK | |x− a| < r}.

First topic: Zeros of the derivative

of a p-adic meromorphic function

Results to due to Kamal Boussaf, Jacqueline Ojeda, Jean-
Paul Bézivin and A. Escassut

Let f(x) =
∑∞

n=0 anx
n ∈ A(IK). According to classical

notations, we set |f |(r) = sup{|f(x)| | |x| ≤ r}. We know that

|f |(r) = sup
n∈ IN

|an|r
n = lim

|x|→r, |x|6=r
|f(x)|.

That notation defines an absolute value on A(IK) and has con-

tinuation to M(IK) as
∣

∣

f

g

∣

∣(r) =
|f |(r)

|g|(r)
with f, g ∈ A(IK).

Given f, g ∈ A(IK), we denote by W (f, g) the Wronskian
of f and g.
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In the paper by Kamal Boussaf, Jacqueline Ojeda and me,
the following Theorems 1 and 2 are proven:

Theorem 1: Let f, g be entire functions on IK such that
W (f, g) is a non-identically zero polynomial. Then both f, g

are polynomials.

Theorem 2 is an easy consequence of Theorem 1:

Theorem 2: Let f be a transcendental meromorphic function
on IK having finitely many multiple poles. Then f ′ takes every
value infinitely many times.

Theorem 2 led us to the following conjecture:

Conjecture: Let f be a meromorphic function on IK such
that f ′ has finitely many zeros. Then f is a rational function.

Definition and notations: Let f ∈ M(IK). For each r > 0,

we denote by by θf (r) the number of zeros of f in d(0, r), taking

multiplicity into account and set τf (r) = θ 1

f
(r). Similarly, we

denote by ψf (r) the number of multiple zeros of f in d(0, r),

each counted with its multiplicity and we set φf (r) = ψ 1

f
(r).

A function h from [1,+∞[ to IN will be said to have fine

upper bound if for some d ∈ IN, h satisfies h(r) ≤ rd in [1,+∞[.

Theorem 3: Let f be a meromorphic function on IK such
that, for some d ∈ IN, φf has fine upper bound. If f ′ has

finitely many zeros, then f is a rational function.

Corollary 1: Let f be a meromorphic function on IK such
that, for some d ∈ IN, φf has fine upper bound. If for some

b ∈ IK f ′ − b has finitely many zeros, then f is a rational
function.
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Corollary 2: Let f be a transcendental meromorphic func-

tion on IK such that τf has fine upper bound. Then f (k) takes

every value in IK infinitely many times, for each k ∈ IN∗.

Corollary 3: Let h be a transcendental entire function on IK
and P ∈ IK[x]. The differential equation y′h = yP admits no
transcendental entire solution f , such that ψf has fine upper

bound.

According to the p-adic Hayman conjecture, for every n ∈
IN∗ f ′fn takes every non-zero value infinitely many times.

Here Theorem 3 has an immediate application to that con-
jecture in the cases n = 1 or n = 2 which are not yet solved,
except with additional hypotheses.

Corollary 4: Let f be a meromorphic function on IK. Sup-
pose that τf has fine upper bound. If f ′fn − b has has finitely

many zeros for some b ∈ IK, with n ∈ IN then f is a rational
function.

Remark: Using Corollary 7 to study zeros of f ′ + bf2 that
are not zeros of f is not so immediate, as done in Theorems 3,
4, 5 [3], because of residues of f at poles of order 1.

Theorem 4: Let f be a transcendental meromorphic function
on IK such that θf has fine upper bound. Then for every b ∈

IK, b 6= 0, f ′ − b has infinitely many zeros.
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Corollary 5: Let f be a transcendental meromorphic func-
tion on IK having no residue different from 0. If θf has fine

upper bound, then f takes every value b ∈ K infinitely many
times.

Among various lemmas, we use the following:

Lemma A: Let f ∈ M(d(0, R−)). For each n ∈ IN, and

for all r ∈]0, R[, we have

|f (n)|(r) ≤ |n!|
|f |(r)

rn
.

Notation: For each n ∈ IN∗, we set

λn = max{ 1
|k| , 1 ≤ k ≤ n}.

Remark: For every n ∈ IN∗, we have λn ≤ n because k|k| ≥

1 ∀k ∈ IN. The equality holds for all n of the form ph.
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Second topic: Complex and p-adic meromorphic functions

f ′P ′(f), g′P ′(g) sharing a small function

Results to due to Kamal Boussaf, Jacqueline Ojeda and A.
Escassut

Now let a ∈ IK and R > 0. We denote by A(d(a,R−))

the IK-algebra of analytic functions in d(a,R−) i.e. the IK-

algebra of power series
∞
∑

n=0

an(x − a)n converging in d(a,R−)

and we denote by M(d(a,R−)) the field of meromorphic func-

tions inside d(a,R−), i.e. the field of fractions of A(d(a,R−)).

Moreover, we denote by Ab(d(a,R
−)) the IK - subalgebra of

A(d(a,R−)) consisting of the bounded analytic functions in

d(a,R−), i.e. which satisfy sup
n∈ IN

|an|R
n < +∞. And we denote

by Mb(d(a,R
−)) the field of fractions of Ab(d(a,R

−)). Finally,

we denote by Au(d(a,R−)) the set of unbounded analytic func-

tions in d(a,R−), i.e. A(d(a,R−)) \ Ab(d(a,R
−)). Similarly,

we set Mu(d(a,R−)) = M(d(a,R−)) \Mb(d(a,R
−)).

A polynomial P ∈ IE[X] is called a polynomial of unique-

ness for a family of functions F ⊂ M(IE) or F ⊂ M(d(a,R−))

if given any two functions f, g ∈ F , the equality P (f) = P (g)
implies f = g.

We say that two functions f, g ∈ M(IE) or φ, ψ ∈

M((.a,R
−)) share a function α, counting multiplicities if f −α

and g − α have the same zeros, with the same order. Particu-
larly, α may be a constant.
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Let f, g be two meromorphic functions that belong to

M(IE) or Mu(d(a,R−)) let P ∈ IE[X] be such that P ′(X) is

of the form Xn
∏l

j=2(X − aj)
kj and assume that f ′P ′(f) and

g′P ′(g) share a small meromorphic function α, counting multi-
plicities. Following many papers on this kind of problem both
in complex analysis and in p-adic analysis, previously we gave
general conditions on the polynomial P in order to assure that

f ′P ′(f) = g′P ′(g). Next, we showed that if n ≥
∑l

j=2 kj + 3

then we have P (f) = P (g). Moreover, if f, g belong to M(IK),

then we can conclude P (f) = P (g) when n ≥
∑l

j=2 kj + 2.

Finally if P is a polynomial of uniqueness for the family of
functions we consider, then we can conclude f = g. Here we
want to propose a new condition on the polynomial P , de-
rived from recent results in algebraic geometry, in order to

prove that P (f) = P (g), without assuming n ≥
∑l

j=2 kj +3 or

n ≥
∑l

j=2 kj + 2.

Our new conclusions derived from the following Theorems
A and B below.

Definitions and notations: Let IF be an algebraically closed
field of characteristic 0, let P, Q ∈ IF[x], let ai, 1 ≤ i ≤ l be

the zeros of P ′ of respective order ki and let bj , 1 ≤ j ≤ h

be the zeros of Q′ of respective order qj , let s = deg(P ) and

m = deg(Q).

Let F ′ = {ai | 1 ≤ i ≤ l, Q(bj) 6= P (ai)∀j = 1, ..., h} and let

F ′′ = {bj | 1 ≤ j ≤ s, P (ai) 6= Q(bj)∀i = 1, ..., l}.

Theorem A was published in Ramajunan Journal, by Ta
Thi Hoai An and me.
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Theorem A: Let P, Q ∈ IK[x]. If one of the following two
statements holds,

∑

ai∈F ′

ki ≥ s−m+ 2 (resp.
∑

ai∈∆

ki ≥ s−m+ 3,)

∑

bj∈F ′′

qj ≥ 2 (resp.
∑

bi∈Λ

qj ≥ 3,)

and if two meromorphic functions f, g ∈ M(IK) (resp. f, g ∈

M(d(a,R−)))) satisfy P (f(x)) = Q(g(x)), x ∈ IK, (resp. x ∈

d(a,R−)) then both f and g are constant (resp. belong to

Mb(d(a,R
−)))).

On the field lC, we have results due to Ta Thi Hoai An
and Nguyen Thi Ngoc Diep:

Proposition B: Let P, Q ∈ lC[X] satisfy one of the two
following conditions:

∑

ai∈F ′

ki ≥ s−m+ 3.

∑

bj∈F ′′

qj ≥ 3.

Then there is no non-constant function f, g ∈ M( lC) such that

P (f(x)) −Q(g(x)) = 0 ∀x ∈ lC.

Notation and definition: Henceforth, we assume that a1 =

P (a1) = 0 and that P (X) is of the form Xn

l
∏

i=2

(X − ai)
ki with

n ≥ 2. The polynomial P will be said to satisfy Hypothesis (G)

if P (ai) + P (aj) 6= 0 ∀(i 6= j)
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Proposition 2 : Let P ∈ IK[X] satisfy Hypothesis (G) and

n ≥ 2 (resp. n ≥ 3). If meromorphic functions f, g ∈ M(IK)

(resp. f, g ∈ M(d(a,R−))) satisfy P (f(x)) = P (g(x)) +

C (C ∈ IK∗), ∀x ∈ IK (resp. ∀x ∈ d(a,R−)) then both f

and g are constant (resp. f and g belong to Mb(d(a,R
−))).

Proposition 3: Let P ∈ lC[X] satisfy Hypothesis (G) and n ≥

3. If meromorphic functions f, g ∈ M( lC) satisfy P (f(x)) =

P (g(x))+C (C ∈ lC∗), ∀x ∈ lC then both f and g are constant.
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Nevanlinna functions and polynomials of uniqueness

In order to define small functions, we must briefly recall
the definitions of the classical Nevanlinna theory in lC and in
IK. Here, for convenience, we will use notation long ago used
in p-adic analysis in order to denote counting functions.

Let log be a real logarithm function of base > 1. Given u ∈

IR∗
+, we denote by log+ the real function defined as log+(u) =

max(log(u), 0).

Let f ∈ M(IE) (resp. f ∈ M(d(0, R−))). Suppose first

that f has no zero and no pole at 0. Let r ∈]0,+∞[ and let

γ ∈ IE (resp. let γ ∈ d(0, R)). If f has a zero of order n at

γ, we set ωγ(h) = n. If f has a pole of order n at γ, we put

ωγ(f) = −n and finally, if f(γ) 6= 0,∞, we put ωγ(f) = 0

We denote by Z(r, f) the counting function of zeros of f

in IE (resp. in d(0, R−)), counting multiplicities, i.e. we set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

ωγ(f)(log r − log |γ|).

Similarly, we denote by Z(r, f) the counting function of zeros

of f in IE (resp. in d(0, R−)), ignoring multiplicities, and set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

(log r − log |γ|).

In the same way, we set N(r, f) = Z
(

r,
1

f

)

(resp. N(r, f) =

Z
(

r,
1

f

)

) to denote the counting function of poles of f in IE
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or in d(0, R−)), counting multiplicity (resp. ignoring multiplic-

ity).

If f admits a zero of order s at 0, we can make a change of
origin or count the zero at 0 by adding s log r and similarly, if
f admits a pole at 0 of order s, we can make a change of origin
or count the pole at 0 by adding −s log r.

Let f ∈ M( lC). Given r > 0, we set

m(r, f) =

∫ 2π

0

log+ |f(reiθ)|dθ

and the function T (r, f) = m(r, f) +N(r, f) is called the char-
acteristic function of f .

Now, let f ∈ M(IK) (resp. let f ∈ M(d(0, R−))). We

set T (r, f) = max(Z(r, f), N(r, f)) and T (r, f) is called the
characteristic function of f again.

Let f ∈ M(IE). A function α ∈ M(IE) is called a small
function with respect to f , if it satisfies

lim
r→+∞

T (r, α)

T (r, f)
= 0.

We denote by Mf (IE) the set of small meromorphic func-

tions with respect to f in IE (it is easily checked that Mf (IE)

is subfield of M(IE) ).

Similarly, let f ∈ M(d(a,R−)). A function α ∈ M(d(a,R−))
is called a small function with respect to f , if it satisfies

lim
r→R−

T (r, α)

T (r, f)
= 0.
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We denote by Mf (d(a,R−)) the set of small meromorphic

functions with respect to f in d(a,R−) (similarly, Mf (d(a,R−))

is subfield of M(d(a,R−))).

Remark: For simplicity, we have kept the same notation on
lC and on IK for counting functions of zeros and poles of a

meromorphic function.

Now, we must examine polynomials of uniqueness in order
to give some sufficient conditions to get polynomials P such
that, if f ′P ′(f) and g′P ′(g) share a small meromorphic func-
tion, then f = g.

Notation: Let P ∈ IF[x] \ IF and let Ξ(P ) be the set of zeros

c of P ′ such that P (c) 6= P (d) for every zero d of P ′ other than

c. We denote by Φ(P ) its cardinal.

Theorem H was first proved by Julie Wang:

Theorem H: Let P ∈ IK[x] be such that P ′ has exactly two
distinct zeros γ1 of order c1 and γ2 of order c2. Then P is a
polynomial of uniqueness for A(IK). Moreover, if min{c1, c2} ≥ 2,

then P is a polynomial of uniqueness for M(IK).

Remark: If deg(P ) = t then Φ(P ) ≤ t−1. If Φ(P ) < l, then

l ≥ Φ(P ) + 2.
We have the following results:
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Theorem J: Let P ∈ IK[x].

If Φ(P ) ≥ 2 then P is a polynomial of uniqueness for

A(IK).

If Φ(P ) ≥ 3 then P is a polynomial of uniqueness for both

Au(d(a,R−)) and M(IK).

If Φ(P ) ≥ 4 then P is a polynomial of uniqueness for

Mu(d(a,R−)).

Theorem L: Let P ∈ IK[x] be of degree n ≥ 6 and such that

P ′ only has two distinct zeros, one of them being of order 2.

Then P is a polynomial of uniqueness for Mu(d(0, R−)).

Concerning the field lC, from various results due to Ta Thi
Hoai An Julie Wang, Pitman Wong, Frank and Reinder and
me, we have the following theorems:

Theorem M: Let P ∈ lC[X] be such that P ′ has exactly two

distinct zeros γ1 of order c1 and γ2 of order c2 with min{c1, c2} ≥ 2

and max(c1, c2) ≥ 3. Then P is a polynomial of uniqueness for

M( lC).

Theorem S: Let P ∈ lC[X]. If Φ(P ) ≥ 4 then P is a poly-

nomial of uniqueness for M( lC).

The following Theorem T holds both on the field IK and
on lC and is useful in the proofs of Theorems 1-10.
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Theorem T: Let Q(X) = (X − a1)
n

∏l

i=2(X − ai)
ki ∈ IE[x]

(ai 6= aj , ∀i 6= j) with l ≥ 2 and n ≥ max{k2, .., kl} and let

k =
∑l

i=2 ki. Let f, g ∈ M(IE) be transcendental (resp. f, g ∈

Mu(d(0, R−))) such that the function θ = f ′Q(f)g′Q(g) is a
small function with respect to f and g. We have the following:
If l = 2 then n belongs to {k, k + 1, 2k, 2k + 1, 3k + 1}.

If l = 3 then n belongs to {
k

2
, k+ 1, 2k+ 1, 3k2 − k, .., 3kl − k}.

If l ≥ 4 then n = k + 1.
If θ is a constant in IK and if f, g ∈ M(IK) then n = k + 1.

Remark: We don’t know any pair of meromorphic functions
f, g and a polynomial Q such that f ′Q(f)g′Q(g) is a small
function with respect to f and g.

Sharing values problems for meromorphic functions

The problem of value sharing a small function by functions
of the form f ′P ′(f) was examined first when P was just of
the form xn. More recently, it was examined when P was a
polynomial such that P ′ had exactly two distinct zeros, both
in complex analysis and in p-adic analysis. In p-adic analysis
we have the opportunity to use the Nevanlinna theory not only

in the whole field IK but also inside a disk d(a,R−). Actually
solving a values sharing problem involving
f ′P ′(f), g′P ′(g) requires to know polynomials of uniqueness
P for meromorphic functions.

We first considered functions f, g ∈ M(IK) or f, g ∈

M(d(a,R−)) and ordinary polynomials P : we only had to as-
sume certain hypotheses on the multiplicity order of the zeros
of P ′: that was published in Buletin des Sciences Mathema-
tiques. Next we dealt with the same problem with functions

13



in lC (that just appeared in Indagationes). In those papers, we

had to assume that n ≥
∑l

j=2 kj +3 (or n ≥
∑l

j=2 kj +2 when

f, g, α ∈ M(IK)). Here thanks to Propositions 2 and 3, we can

replace that hypothesis by Hypothesis (G).

We can now state our main theorems.
Theorem 1: Let P be a polynomial of uniqueness for M(IE)

(resp. for Mu(d(a,R−))) satisfying Hypothesis (G). Let

P ′ = bXn

l
∏

i=2

(X − ai)
ki

with b ∈ IE∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies the following conditions:

n ≥ 10 + max(0, 5 − k2) +

l
∑

i=3

max(0, 4 − ki),

if l = 2, then n 6= k, k + 1, 2k, 2k + 1, 3k + 1,

if l = 3, then n 6=
k

2
, k + 1, 2k + 1, 3ki − k ∀i = 2, 3,

if l ≥ 4, then n 6= k + 1.

Let f, g ∈ M(IE) (resp. f, g ∈ Mu(d(a,R−))) be tran-

scendental and let α ∈ Mf (IK)∩Mg(IK) (resp. α ∈ Mf (d(a,R−))∩

Mg(d(a,R
−))) be non-identically zero. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

By Theorem J, we have Corollary 1.1:

14



Corollary 1.1 Let P ∈ IK[x] satisfy Φ(P ) ≥ 3 and Hy-

pothesis (G), let P ′ = bXn

l
∏

i=2

(X − ai)
ki with b ∈ IK∗, l ≥ 3,

ki ≥ ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P

satisfies the following conditions:

n ≥ 10 + max(0, 5 − k2) +
l

∑

i=3

max(0, 4 − ki),

if l = 3, then n 6=
k

2
, k + 1, 2k + 1, 3ki − k ∀i = 2, 3,

if l ≥ 4, then n 6= k + 1. Let f, g ∈ M(IK) be transcen-

dental and let α ∈ Mf (IK) ∩ Mg(IK) be non-identically zero.

If f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Example: Let

P (X) =
X20

20
−
X19

19
−

4X18

18
+

4X17

17

+
6X16

16
−

6X15

15
−

4X14

14
+

4X13

13
+
X12

12
−
X11

11

We can check that P ′(X) = X10(X − 1)5(X + 1)4 and

P (0) = 0, P (1) =
4

∑

j=0

C
j
4(−1)j

( 1

10 + 2j
−

1

9 + 2j

)

,

P (−1) = −
4

∑

j=0

C
j
4

( 1

10 + 2j
+

1

9 + 2j

)
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Consequently, we have Φ(P ) = 3 and we check that Hypothesis

(G) is satisfied. Now, let f, g ∈ M(IK) be transcendental and

let α ∈ Mf (IK) ∩ Mg(IK) be non-identically zero. If f ′P ′(f)

and g′P ′(g) share α C.M., then f = g.

Remark: In that example, we have n = 10, k = 9. Applying
our previous work, a conclusion would have required n ≥ k +
2 = 11.

Corollary 1.2 Let P ∈ IK[X] satisfy Φ(P ) ≥ 4 and Hy-

pothesis (G), let P ′ = bXn

l
∏

i=2

(X − ai)
ki with b ∈ IK∗, ki ≥

ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies

the following conditions:

n ≥ 10 + max(0, 5 − k2) +

l
∑

i=3

max(0, 4 − ki),

n 6= k + 1.

Let f, g ∈ Mu(d(a,R−)) and let α ∈ Mf (d(a,R−)) ∩

Mg(d(a,R
−)) be non-identically zero. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.
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Corollary 1.3 Let P ∈ lC[X] satisfy Φ(P ) ≥ 4 and Hy-

pothesis (G), let P ′ = bXn

l
∏

i=2

(X − ai)
ki with b ∈ IK∗, ki ≥

ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies

the following conditions:

n ≥ 10 + max(0, 5 − k2) +
l

∑

i=3

max(0, 4 − ki),

n 6= k + 1.
Let f, g ∈ M( lC) and let α ∈ Mf ( lC) ∩ Mg( lC) be non-

identically zero. If f ′P ′(f) and g′P ′(g) share α C.M., then
f = g.

Example: Let

P (X) =
X24

24
−

10X23

23
+

36X22

22
−

40X21

21
−

74X20

20
+

226X19

19

−
84X18

18
−

312X17

17
+

321X16

16
+

88X15

15

−
280X14

14
+

48X13

13
+

80X12

12
−

32X11

11

We can check that P ′(X) = X10(X−2)5(X+1)4(X−1)4. Next,

we have P (2) < −134378, P (1) ∈]−2, 11;−2, 10[, P (−1) ∈

]2, 18; 2, 19[. Therefore, P (0), P (1), P (−1), P (2) are all dis-

tinct, hence Φ(P ) = 4. Moreover, Hypothesis (G) is satisfied.
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Now, let f, g ∈ M(IK) (resp. let f, g ∈ Mu(d(a,R−)),

resp. let f, g ∈ M( lC)) and let α ∈ M(IK) (resp. let α ∈

M(d(a,R−)), resp. let α ∈ M( lC)) be non-identically zero. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Remark: In that example, we have n = 10, k = 13. Apply-
ing Theorem 4 in the paper in Bulletin des Sciences or Theo-
rem 1 in the paper in Indagationes, a conclusion would have
required n ≥ k + 3 = 16.

When l = 2, Hypothesis (G) is automatically satisfied. So,
by Theorem H we also have Corollary 1.4.

And by Theorem M we also have Corollary 1.4

Corollary 1.4 Let P ∈ lC[X] be such that P ′ is of the form

bXn(X − a2)
k with min(k, n) ≥ 2 and max(n, k) ≥ 3. Suppose

that P satisfies the further conditions:
n ≥ 10 + max(0, 5 − k),
n 6= k + 1, 2k, 2k + 1, 3k + 1.
Let f, g ∈ M( lC) be transcendental and let α ∈ Mf ( lC) ∩

Mg( lC) be non-identically zero. If f ′P ′(f) and g′P ′(g) share

α C.M., then f = g.

Remark: Thanks to Corollary 1.4, we can take k = 8, n = 10
which we couldn’t do in the paper in Indagationes.

Example: Let P (X) =
X6

6
−

2X5

5
+
X4

4
. Then P ′(X) =

X3(X − 1)2.

Given f, g ∈ M( lC) transcendental such that f ′P ′(f) and

g′P ′(g) share a small function α ∈ M( lC) C.M., we have f = g.
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Theorem 2: Let P be a polynomial of uniqueness for M(IK)

satisfying Hypothesis (G), let

P ′ = bXn

l
∏

i=2

(X − ai)
ki with b ∈ IK∗, l ≥ 2, ki ≥ ki+1, 2 ≤

i ≤ l−1 and let k =
∑l

i=2 ki. Suppose P satisfies the following

conditions:

n ≥ 9 + max(0, 5 − k2) +

l
∑

i=3

max(0, 4 − ki),

if l = 2, then n 6= k, k + 1, 2k, 2k + 1, 3k + 1,

if l = 3, then n 6=
k

2
, k + 1, 2k + 1, 3ki − k ∀i = 2, 3,

if l ≥ 4, then n 6= k + 1.

Let f, g ∈ M(IK) be transcendental and let α be a Moebius

function. If f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Corollary 2.1 Let P ∈ IK[X] satisfy Φ(P ) ≥ 3 and Hy-

pothesis (G), let P ′ = bXn

l
∏

i=2

(X − ai)
ki with b ∈ IK∗, ki ≥

ki+1, 2 ≤ i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies

the following conditions:

n ≥ 9 + max(0, 5 − k2) +
l

∑

i=3

max(0, 4 − ki),

if l = 3, then n 6=
k

2
, k + 1, 2k + 1, 3ki − k ∀i = 2, 3.

if l ≥ 4, then n 6= k + 1.

Let f, g ∈ M(IK) be transcendental and let α be a Moebius

function. If f ′P ′(f) and g′P ′(g) share α C.M., then f = g.
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When α is a constant and IE = IK, we can simplify the
conditions on n and k,

Theorem 3: Let P be a polynomial of uniqueness for M(IK)

satisfying Hypothesis (G), let

P ′ = bXn

l
∏

i=2

(X − ai)
ki with b ∈ IK∗, l ≥ 2, ki ≥ ki+1, 2 ≤

i ≤ l−1 and let k =
∑l

i=2 ki. Suppose P satisfies the following

conditions:

n ≥ 9 +

l
∑

i=3

max(0, 4 − ki) + max(0, 5 − k2),

n 6= k + 1.

Let f, g ∈ M(IK) be transcendental and let α be a non-zero

constant. If f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Remark: In Theorem 3 of the paper in Indagationes, we ob-
tained n ≥ k + 2. Here we just have n 6= k + 1 instead.

Corollary 3.1 Let P ∈ IK[X] satisfy Φ(P ) ≥ 3 and Hy-

pothesis (G), let P ′ = bXn

l
∏

i=2

(X − ai)
ki with b ∈ IK∗, ki ≥

ki+1, 1 ≤ i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies

the following conditions:

n ≥ 9 + max(0, 5 − k2) +

l
∑

i=3

max(0, 4 − ki),

n 6= k + 1.

Let f, g ∈ M(IK) be transcendental and let α be a non-zero

constant. If f ′P ′(f) and g′P ′(g) share α C.M., then f = g.
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And by Theorem A, we have Corollary 3.2

Corollary 3.2 Let P ∈ IK[X] be such that P ′ is of the form

bXn(X − a2)
k with k ≥ 2 and with b ∈ IK∗ and k ≤ n. Suppose

P satisfies the following conditions:
n ≥ 9 + max(0, 5 − k),
n 6= k + 1,
Let f, g ∈ M(IK) be transcendental and let α be a non-zero

constant. If f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Remark: In Corollary 3.2 of the paper published in Bulletin
des Sciences, we obtained n ≥ k+ 2 (with an additional condi-
tion that said n 6= 2k+1, 3k+1 but actually this is useless and
just comes from a misprint). So, here we have an improvement
with the hypothesis n 6= k + 1 instead of n ≥ k + 2. Actually,
since k ≤ n, we obtain the additional hypothesis n = k.

Example: Let

P (X) =
X19

19
−
X18

18
−

4X17

17
+

4X16

16
+

6X15

15
−

6X14

14
−

4X13

13

+
4X12

12
+
X11

11
−
X10

10

We can check that P ′(X) = X9(X − 1)5(X + 1)4 and

P (0) = 0, P (1) =
4

∑

j=0

C
j
4(−1)j

( 1

9 + 2j
−

1

8 + 2j

)

P (−1) = −
4

∑

j=0

C
j
4

( 1

9 + 2j
+

1

8 + 2j

)
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Consequently, we can check that Φ(P ) = 3 and that Hypothesis

(G) is satisfied. Now, let f, g ∈ M(IK) be transcendental and

let α ∈ IK∗. If f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

For memory, here we can recall and summarize the follow-
ing Theorems 4, 5 , 6, 7 and Corollaries 4.1 and 5.1. Theorem
4 is partially given in [4] and partilally given in [5]. Theorem

5 is given in [4]. Theorems 6 is given in [4] and Theorem 7

is given in [5]. We can not improve them since the inequality
n ≥ k + 3 is satisfied in each statement.
Theorem 4: Let P be a polynomial of uniqueness for M(IE)

(resp. for Mu(d(a,R−))) satisfying Hypothesis (G). Let P ′ be

of the form bXn

l
∏

i=2

(X − ai) with l ≥ 3 , b ∈ IK∗, satisfying:

n ≥ l + 10.
Let f, g ∈ M(IE) be transcendental (resp. f, g ∈ Mu(d(a,R−)))

and let α ∈ Mf (IK) ∩ Mg(IK) (resp. α ∈ Mf (d(a,R−)) ∩

Mg(d(a,R
−))) be non-identically zero. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.

Corollary 4.1 Let P ∈ IK[X] satisfy Φ(P ) ≥ 3 (resp. Φ(P ) ≥

4 and be such that P ′ is of the form bXn

l
∏

i=2

(X − ai) with l ≥ 3

(resp. l ≥ 4), b ∈ IK∗, satisfying n ≥ l + 10.

Let f, g ∈ M(IK) be transcendental (resp. let f, g ∈ Mu(d(a,R−)))

and let α ∈ Mf (IK) ∩ Mg(IK) (resp. α ∈ Mf (d(a,R−)) ∩

Mg(d(a,R
−))) be non-identically zero. If f ′P ′(f) and g′P ′(g)

share α C.M., then f = g.
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Theorem 5: Let P be a polynomial of uniqueness for M(IK)

such that P ′ is of the form

P ′ = bXn

l
∏

i=2

(X − ai) with l ≥ 3, b ∈ IK∗ satisfying n ≥ l + 9.

Let f, g ∈ M(IK) be transcendental and let α be a Moebius

function or a non-zero constant. If f ′P ′(f) and g′P ′(g) share
α C.M., then f = g.

Corollary 5.1 Let P ∈ IK[X] be such that Φ(P ) ≥ 3 and be
of the form

P ′ = bXn

l
∏

i=2

(X − ai) with l ≥ 3, b ∈ IK∗ satisfying n ≥ l + 9.

Let f, g ∈ M(IK) be transcendental and let α be a Moebius

function or a non-zero constant. If f ′P ′(f) and g′P ′(g) share
α C.M., then f = g.

Remark: In Theorems 4 and 5 and Corollaries 4.1 and 5.1,

it is useless to specify n 6= k + 1 and if l = 3, n 6= k
2 , k +

1, 2k + 1, 3ki − k... because these condition are automaticaly
satisfied due to the hypotheses ln ≥ l + 9 and ki = 1∀i.

Theorem 6: Let f, g ∈ M(IE) be transcendental and let

α ∈ Mf (IE)∩Mg(IE) be non-identically zero. Let a ∈ IK\{0}.

If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and

if n ≥ 12, then either f = g or there exists h ∈ M(IE) such

that f =
a(n+ 2)

n+ 1

(hn+1 − 1

hn+2 − 1

)

h and g =
a(n+ 2)

n+ 1

(hn+1 − 1

hn+2 − 1

)

.

Moreover, if IE = IK and if α is a constant or a Moebius func-
tion, then the conclusion holds whenever n ≥ 11.
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Inside an open disk, we have a version similar to the gen-
eral case in the whole field.
Theorem 7: Let f, g ∈ Mu(d(0, R−)), and let

α ∈ Mf (d(0, R−))∩Mg(d(0, R
−)) be non-identically zero. Let

a ∈ IK \ {0}. If f ′fn(f − a) and g′gn(g− a) share the function
α C.M. and n ≥ 12, then either f = g or there exists h ∈

M(d(0, R−)) such that f =
a(n+ 2)

n+ 1

(hn+1 − 1

hn+2 − 1

)

h and g =

a(n+ 2)

n+ 1

(hn+1 − 1

hn+2 − 1

)

.

Remark: As noticed in [4], in Theorems 7 and 8, the sec-

ond conclusion does occur. Indeed, let h ∈ M(IK) (resp. let

h ∈ Mu(d(0, R−))). Now, let us precisely define f and g

as: g = (
n+ 2

n+ 1
)
(hn+1) − 1

hn+2 − 1

)

and f = hg. Then we can see

that the polynomial P (y) =
1

n+ 2
yn+2 −

1

n+ 1
yn+1 satisfies

P (f) = P (g), hence f ′P ′(f) = g′P ′(g), therefore f ′P ′(f) and

g′P ′(g) trivially share any function.

24



Sharing values problems for analytic functions

First we can improve results given in Bulletin des Sciences
concerning p-adic analytic functions. In the paper given for
Proceedings of the 12th Conference on p-adic Functional Anal-
ysis we gave the following theorem 8:

Theorem 8: Let P (X) ∈ IK[X] be a polynomial of unique-

ness for A(IK) (resp. for A(d(a,R−))), let P ′(X) =

l
∏

i=1

(X − ai)
ki

and let f, g ∈ A(IK) be transcendental (resp. let f, g ∈ Au(d(a,R−)))

such that f ′P ′(f) and g′P ′(g) share a small function α ∈

Af (IK) ∩ Ag(IK) (resp. α ∈ Af (d(, R−)) ∩ Ag(d(a,R
−))). If

l
∑

i=1

ki ≥ 2l + 2 then f = g. Moreover, if f, g belong to A(IK),

if α is a constant and if
l

∑

i=1

ki ≥ 2l + 1 then f = g.

Corollary 8.1: Let P (X) ∈ IK[X] be such that Φ(P ) ≥ 2,

let P ′(X) =

l
∏

i=1

(X − ai)
ki and let f, g ∈ A(IK) be transcen-

dental such that f ′P ′(f) and g′P ′(g) share a small function

α ∈ Af (IK)∩Ag(IK). If
l

∑

i=1

ki ≥ 2l + 2 then f = g. Moreover,

if α is a constant and if

l
∑

i=1

ki ≥ 2l + 1 then f = g.
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Example: Let E be the algebraic equation:

X14
( 1

14
−

1

13

)

−X12
( 1

12
−

1

11

)

−
( 1

14
−

1

13

)

+
1

12
−

1

11
= 0

and let c ∈ IK be a solution of E . Let

P (X) =
X14

14
−
cX13

13
−
X12

12
+
cX11

11

Then we can check that P ′(X) = X10(X−1)(X+1)(X−c),

P (1) = P (c) 6= 0 and that P (1) 6= 0, P (−1) 6= 0, P (1) +

P (−1) =
1

7
−

1

6
, and P (−1) − P (1) = 2c

( 1

11
−

1

13

)

, hence

P (−1) 6= P (c). Consequently, Φ(P ) = 2. Consequently, we

can apply Corollary 8.1 and show that if f ′P ′(f) and g′P ′(g)

share a small function α ∈ Af (IK) ∩ Ag(IK), then f = g.

Remark: Recall Hypothesis (F) due to H. Fujimoto. A poly-

nomial Q is said to satisfy Hypothesis (F) if the restriction of

Q to the set of zeros of Q′ is injective. In the last example, we
may notice that Hypothesis (F) is not satisfied by P .

Corollary 8.2: Let P (X) ∈ IK[X] be such that Φ(P ) ≥ 3,

let P ′(X) =
l

∏

i=1

(X − ai)
ki and let f, g ∈ Au(d(a,R−)) be

such that f ′P ′(f) and g′P ′(g) share a small function α ∈

Af (d(a,R−)) ∩ Ag(d(a,R
−)). If

l
∑

i=1

ki ≥ 2l + 2 then f = g.
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Corollary 8.3: Let P (X) ∈ IK[X] be such that Φ(P ) ≥ 2,

(resp. Φ(P ) ≥ 3) be such that P ′(X) = Xn

l
∏

i=2

(X − ai) with

l ≥ 3 and let f, g ∈ A(IK) (resp. f, g ∈ Au(d(a,R−))) be such

that f ′P ′(f) and g′P ′(g) share a small function α ∈ Af (IK) ∩

Ag(IK) (resp. α ∈ Af (d(a,R−)) ∩ Ag(d(a,R
−))). If n ≥ l + 3

then f = g. Moreover, if f, g belong to A(IK), if α is a constant
and if n ≥ l + 2 then f = g.

Concerning complex analytic functions in lC, we can im-
prove previous results.
Theorem 9: Let P be a polynomial of uniqueness for A( lC)

satisfying Hypothesis (G), let

P ′ = bXn

l
∏

i=2

(X − ai)
ki with b ∈ lC∗, l ≥ 2, ki ≥ ki+1, 2 ≤

i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies n ≥ 5 +

max(0, 5 − k2) +

l
∑

i=3

max(0, 4 − ki)

Let f, g ∈ A( lC) be transcendental and let α ∈ Af ( lC) ∩

Ag( lC) be non-identically zero. If f ′P ′(f) and g′P ′(g) share α

C.M., then f = g.

By Proposition 3, we have Corollary 9.1:
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Corollary 9.1 Let P ∈ lC[X] satisfy satisfying Hypothesis

(G), let P ′ = bXn

l
∏

i=2

(X − ai)
ki with b ∈ lC∗, ki ≥ ki+1, 1 ≤

i ≤ l − 1 and let k =
∑l

i=2 ki. Suppose P satisfies

n ≥ 5 + max(0, 5 − k2) +
l

∑

i=3

max(0, 4 − ki), ,

Let f, g ∈ M( lC) be transcendental and let α ∈ Mf ( lC) ∩

Mg( lC) be non-identically zero. If f ′P ′(f) and g′P ′(g) share

α C.M., then f = g.

And by Proposition 2 we also have Corollary 9.2

Corollary 9.2 Let P ∈ lC[X] be such that P ′ is of the form

bXn(X − a)k with min(k, n) ≥ 2 and max(n, k) ≥ 3. Suppose

that P satisfies n ≥ 5 + max(0, 5 − k),

Let f, g ∈ A( lC) be transcendental and let α ∈ Af ( lC) ∩

Ag( lC) be non-identically zero. If f ′P ′(f) and g′P ′(g) share α

C.M., then f = g.

Example: Let

P (X) =
X11

11
+

5X10

10
+

10X9

9
+

10X8

8
+

5X7

7
+
X6

6
.

Then P ′(X) = X5(X+1)5. We can apply Corollary 9.2: given

f, g ∈ A( lC) transcendental such that f ′P ′(f) and g′P ′(g)

share a small function α ∈ M( lC) C.M., we have f = g.

Remark: If we had applied Theorem 1 in the paper in Inda-
gationes, with k = 5, we should have taken n ≥ k + 2, hence
n ≥ 7.
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When all ki are equal to 1, we can obtain a better formu-
lation:
Theorem 10: Let P be a polynomial of uniqueness for A( lC)

satisfying Hypothesis (G), such that P ′ is of the form

bXn

l
∏

i=2

(X − ai) with l ≥ 3 , b ∈ lC∗, satisfying n ≥ l + 5.

Let f, g ∈ A( lC) be transcendental and let α ∈ Af ( lC) ∩ Ag( lC)

be non-identically zero. If f ′P ′(f) and g′P ′(g) share α C.M.,
then f = g.

By Proposition 3, we have Corollary 10.1:

Corollary 10.1 Let P ∈ lC[X] satisfy Φ(P ) ≥ 4 and satisfy

Hypothesis (G) and be such that P ′ is of the form bXn

l
∏

i=2

(X − ai)

and b ∈ lC∗, satisfying n ≥ l + 5.
Let f, g ∈ A( lC) be transcendental and let α ∈ Af ( lC) ∩ Ag( lC)

be non-identically zero. If f ′P ′(f) and g′P ′(g) share α C.M.,
then f = g.

Example: Let P (x) =
X13

13
−

2X12

12
−
X11

11
+

2X10

10
. Then

P ′(X) = X9(X − 1)(X + 1)(X − 2). We check that:

P (0) = 0, P (1) =
1

13
−

2

12
−

1

11
+

2

10
,

P (−1) =
1

13
+

2

12
−

1

11
−

2

10
6= 0, P (1). Further, we notice

that and |P (1)| < 1, |P (−1)| < 1.

Finally, P (2) =
213

13
−

213

12
−

211

11
+

211

10
= −

72704

2145
> 33 hence

P (2) 6= 0, P (1), P (−1). Then Φ(P ) = 4.
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So, P is a polynomial of uniqueness for M( lC) and it

clearly satisfies Hypothesis (G). Moreover, we have n = 9, l =

4, so we can apply Corollary 10.1. Given f, g ∈ A( lC) tran-

scendental such that f ′P ′(f) and g′P ′(g) share a small function

α ∈ A( lC) C.M., we have f = g.
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