General notations: We consider an algebraically closed field \mathbb{E} of characteristic zero which is either \mathbb{C} or a complete ultrametric field \mathbb{K} . We denote by $\mathcal{A}(\mathbb{E})$ the \mathbb{E} -algebra of entire functions in \mathbb{E} , by $\mathcal{M}(\mathbb{E})$ the field of meromorphic functions in \mathbb{E} , i.e. the field of fractions of $\mathcal{A}(\mathbb{E})$ and by $\mathbb{E}(x)$ the field of rational functions.

Given $a \in \mathbb{K}$ and R > 0, we denote by d(a, R) the disk $\{x \in \mathbb{K} \mid |x - a| \leq r\}$ and by $d(a, R^{-})$ the disk $\{x \in \mathbb{K} \mid |x - a| < r\}$.

First topic: Zeros of the derivative of a *p*-adic meromorphic function

Results to due to Kamal Boussaf, Jacqueline Ojeda, Jean-Paul Bézivin and A. Escassut

Let $f(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathcal{A}(\mathbb{IK})$. According to classical notations, we set $|f|(r) = \sup\{|f(x)| \mid |x| \leq r\}$. We know that

$$|f|(r) = \sup_{n \in \mathbb{N}} |a_n| r^n = \lim_{|x| \to r, |x| \neq r} |f(x)|.$$

That notation defines an absolute value on $\mathcal{A}(\mathbb{I}K)$ and has continuation to $\mathcal{M}(\mathbb{I}K)$ as

$$\left|\frac{f}{g}\right|(r) = \frac{|f|(r)}{|g|(r)}$$
 with $f, g \in \mathcal{A}(\mathbb{K})$.

Given $f, g \in \mathcal{A}(\mathbb{K})$, we denote by W(f,g) the Wronskian of f and g.

In the paper by Kamal Boussaf, Jacqueline Ojeda and me, the following Theorems 1 and 2 are proven:

Theorem 1: Let f, g be entire functions on IK such that W(f, g) is a non-identically zero polynomial. Then both f, g are polynomials.

Theorem 2 is an easy consequence of Theorem 1:

Theorem 2: Let f be a transcendental meromorphic function on \mathbb{K} having finitely many multiple poles. Then f' takes every value infinitely many times.

Theorem 2 led us to the following conjecture:

Conjecture: Let f be a meromorphic function on \mathbb{K} such that f' has finitely many zeros. Then f is a rational function.

Definition and notations: Let $f \in \mathcal{M}(\mathbb{K})$. For each r > 0, we denote by by $\theta_f(r)$ the number of zeros of f in d(0, r), taking multiplicity into account and set $\tau_f(r) = \theta_{\frac{1}{f}}(r)$. Similarly, we denote by $\psi_f(r)$ the number of multiple zeros of f in d(0, r), each counted with its multiplicity and we set $\phi_f(r) = \psi_{\frac{1}{f}}(r)$.

A function h from $[1, +\infty[$ to \mathbb{N} will be said to have fine upper bound if for some $d \in \mathbb{N}$, h satisfies $h(r) \leq r^d$ in $[1, +\infty[$.

Theorem 3: Let f be a meromorphic function on \mathbb{K} such that, for some $d \in \mathbb{N}$, ϕ_f has fine upper bound. If f' has finitely many zeros, then f is a rational function.

Corollary 1: Let f be a meromorphic function on \mathbb{K} such that, for some $d \in \mathbb{N}$, ϕ_f has fine upper bound. If for some $b \in \mathbb{K}$ f' - b has finitely many zeros, then f is a rational function.

Corollary 2: Let f be a transcendental meromorphic function on \mathbb{K} such that τ_f has fine upper bound. Then $f^{(k)}$ takes every value in \mathbb{K} infinitely many times, for each $k \in \mathbb{N}^*$.

Corollary 3: Let h be a transcendental entire function on \mathbb{K} and $P \in \mathbb{K}[x]$. The differential equation y'h = yP admits no transcendental entire solution f, such that ψ_f has fine upper bound.

According to the *p*-adic Hayman conjecture, for every $n \in \mathbb{N}^* f' f^n$ takes every non-zero value infinitely many times. Here Theorem 3 has an immediate application to that conjecture in the cases n = 1 or n = 2 which are not yet solved, except with additional hypotheses.

Corollary 4: Let f be a meromorphic function on \mathbb{K} . Suppose that τ_f has fine upper bound. If $f'f^n - b$ has has finitely many zeros for some $b \in \mathbb{K}$, with $n \in \mathbb{N}$ then f is a rational function.

Remark: Using Corollary 7 to study zeros of $f' + bf^2$ that are not zeros of f is not so immediate, as done in Theorems 3, 4, 5 [3], because of residues of f at poles of order 1.

Theorem 4: Let f be a transcendental meromorphic function on \mathbb{K} such that θ_f has fine upper bound. Then for every $b \in$ \mathbb{K} , $b \neq 0$, f' - b has infinitely many zeros. **Corollary 5:** Let f be a transcendental meromorphic function on \mathbb{K} having no residue different from 0. If θ_f has fine upper bound, then f takes every value $b \in K$ infinitely many times.

Among various lemmas, we use the following:

Lemma A: Let $f \in \mathcal{M}(d(0, R^{-}))$. For each $n \in \mathbb{N}$, and for all $r \in]0, R[$, we have

$$|f^{(n)}|(r) \le |n!| \frac{|f|(r)}{r^n}.$$

Notation: For each $n \in \mathbb{N}^*$, we set $\lambda_n = \max\{\frac{1}{|k|}, 1 \le k \le n\}.$

Remark: For every $n \in \mathbb{N}^*$, we have $\lambda_n \leq n$ because $k|k| \geq 1 \quad \forall k \in \mathbb{N}$. The equality holds for all n of the form p^h .

Second topic: Complex and *p*-adic meromorphic functions f'P'(f), g'P'(g) sharing a small function

Results to due to Kamal Boussaf, Jacqueline Ojeda and A. Escassut

Now let $a \in \mathbb{K}$ and R > 0. We denote by $\mathcal{A}(d(a, R^{-}))$ the \mathbb{K} -algebra of analytic functions in $d(a, R^{-})$ i.e. the \mathbb{K} algebra of power series $\sum_{n=0}^{\infty} a_n(x-a)^n$ converging in $d(a, R^{-})$ and we denote by $\mathcal{M}(d(a, R^{-}))$ the field of meromorphic functions inside $d(a, R^{-})$, i.e. the field of fractions of $\mathcal{A}(d(a, R^{-}))$. Moreover, we denote by $\mathcal{A}_b(d(a, R^{-}))$ the \mathbb{K} - subalgebra of $\mathcal{A}(d(a, R^{-}))$ consisting of the bounded analytic functions in $d(a, R^{-})$, i.e. which satisfy $\sup_{n \in \mathbb{N}} |a_n| R^n < +\infty$. And we denote by $\mathcal{M}_b(d(a, R^{-}))$ the field of fractions of $\mathcal{A}_b(d(a, R^{-}))$. Finally, we denote by $\mathcal{A}_u(d(a, R^{-}))$ the set of unbounded analytic functions in $d(a, R^{-})$, i.e. $\mathcal{A}(d(a, R^{-})) \setminus \mathcal{A}_b(d(a, R^{-}))$. Similarly, we set $\mathcal{M}_u(d(a, R^{-})) = \mathcal{M}(d(a, R^{-})) \setminus \mathcal{M}_b(d(a, R^{-}))$.

A polynomial $P \in \mathbb{E}[X]$ is called a polynomial of uniqueness for a family of functions $\mathcal{F} \subset \mathcal{M}(\mathbb{E})$ or $\mathcal{F} \subset \mathcal{M}(d(a, \mathbb{R}^{-}))$ if given any two functions $f, g \in \mathcal{F}$, the equality P(f) = P(g)implies f = g.

We say that two functions $f, g \in \mathcal{M}(\mathbb{E})$ or $\phi, \psi \in \mathcal{M}((a, R^{-}))$ share a function α , counting multiplicities if $f - \alpha$ and $g - \alpha$ have the same zeros, with the same order. Particularly, α may be a constant.

Let f, g be two meromorphic functions that belong to $\mathcal{M}(\mathbb{E})$ or $\mathcal{M}_u(d(a, \mathbb{R}^-))$ let $P \in \mathbb{E}[X]$ be such that P'(X) is of the form $X^n \prod_{j=2}^l (X-a_j)^{k_j}$ and assume that f'P'(f) and g'P'(g) share a small meromorphic function α , counting multiplicities. Following many papers on this kind of problem both in complex analysis and in *p*-adic analysis, previously we gave general conditions on the polynomial P in order to assure that f'P'(f) = g'P'(g). Next, we showed that if $n \ge \sum_{j=2}^{l} k_j + 3$ then we have P(f) = P(g). Moreover, if f, g belong to $\mathcal{M}(\mathbb{I}K)$, then we can conclude P(f) = P(g) when $n \ge \sum_{j=2}^{l} k_j + 2$. Finally if P is a polynomial of uniqueness for the family of functions we consider, then we can conclude f = g. Here we want to propose a new condition on the polynomial P, derived from recent results in algebraic geometry, in order to prove that P(f) = P(g), without assuming $n \ge \sum_{j=2}^{l} k_j + 3$ or $n \ge \sum_{j=2}^{l} k_j + 2.$

Our new conclusions derived from the following Theorems A and B below.

Definitions and notations: Let IF be an algebraically closed field of characteristic 0, let $P, Q \in \operatorname{IF}[x]$, let $a_i, 1 \leq i \leq l$ be the zeros of P' of respective order k_i and let $b_j, 1 \leq j \leq h$ be the zeros of Q' of respective order q_j , let $s = \deg(P)$ and $m = \deg(Q)$. Let $F' = \{a_i \mid 1 \leq i \leq l, Q(b_i) \neq P(a_i) \forall j = 1, ..., h\}$ and let

$$F'' = \{b_j \mid 1 \le j \le s, P(a_i) \ne Q(b_j) \forall i = 1, ..., l\}.$$

Theorem A was published in Ramajunan Journal, by Ta Thi Hoai An and me.

Theorem A: Let $P, Q \in \mathbb{K}[x]$. If one of the following two statements holds,

$$\sum_{a_i \in F'} k_i \ge s - m + 2 \quad (resp. \sum_{a_i \in \Delta} k_i \ge s - m + 3,)$$
$$\sum_{b_j \in F''} q_j \ge 2 \quad (resp. \sum_{b_i \in \Lambda} q_j \ge 3,)$$

and if two meromorphic functions $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}(d(a, R^{-}))$) satisfy $P(f(x)) = Q(g(x)), x \in \mathbb{K}$, (resp. $x \in d(a, R^{-})$) then both f and g are constant (resp. belong to $\mathcal{M}_b(d(a, R^{-}))$).

On the field \mathbb{C} , we have results due to Ta Thi Hoai An and Nguyen Thi Ngoc Diep:

Proposition B: Let $P, Q \in \mathbb{C}[X]$ satisfy one of the two following conditions:

$$\sum_{a_i \in F'} k_i \ge s - m + 3$$
$$\sum_{b_j \in F''} q_j \ge 3.$$

Then there is no non-constant function $f, g \in \mathcal{M}(\mathbb{C})$ such that $P(f(x)) - Q(g(x)) = 0 \ \forall x \in \mathbb{C}.$

Notation and definition: Henceforth, we assume that $a_1 = P(a_1) = 0$ and that P(X) is of the form $X^n \prod_{i=2}^{l} (X - a_i)^{k_i}$ with $n \ge 2$. The polynomial P will be said to satisfy Hypothesis (G) if $P(a_i) + P(a_j) \ne 0 \ \forall (i \ne j)$

Proposition 2 : Let $P \in \mathbb{K}[X]$ satisfy Hypothesis (G) and $n \geq 2$ (resp. $n \geq 3$). If meromorphic functions $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}(d(a, R^{-}))$) satisfy P(f(x)) = P(g(x)) + C $C (C \in \mathbb{K}^{*}), \forall x \in \mathbb{K}$ (resp. $\forall x \in d(a, R^{-})$) then both fand g are constant (resp. f and g belong to $\mathcal{M}_{b}(d(a, R^{-}))$).

Proposition 3: Let $P \in \mathbb{C}[X]$ satisfy Hypothesis (G) and $n \geq 3$. If meromorphic functions $f, g \in \mathcal{M}(\mathbb{C})$ satisfy $P(f(x)) = P(g(x)) + C \ (C \in \mathbb{C}^*), \ \forall x \in \mathbb{C}$ then both f and g are constant.

Nevanlinna functions and polynomials of uniqueness

In order to define small functions, we must briefly recall the definitions of the classical Nevanlinna theory in \mathbb{C} and in IK. Here, for convenience, we will use notation long ago used in p-adic analysis in order to denote counting functions.

Let log be a real logarithm function of base > 1. Given $u \in \mathbb{R}^*_+$, we denote by \log^+ the real function defined as $\log^+(u) = \max(\log(u), 0)$.

Let $f \in \mathcal{M}(\mathbb{E})$ (resp. $f \in \mathcal{M}(d(0, R^{-}))$). Suppose first that f has no zero and no pole at 0. Let $r \in]0, +\infty[$ and let $\gamma \in \mathbb{E}$ (resp. let $\gamma \in d(0, R^{)}$). If f has a zero of order n at γ , we set $\omega_{\gamma}(h) = n$. If f has a pole of order n at γ , we put $\omega_{\gamma}(f) = -n$ and finally, if $f(\gamma) \neq 0, \infty$, we put $\omega_{\gamma}(f) = 0$

We denote by Z(r, f) the counting function of zeros of fin \mathbb{E} (resp. in $d(0, R^{-})$), counting multiplicities, i.e. we set

$$Z(r, f) = \sum_{\omega_{\gamma}(f) > 0, |\gamma| \le r} \omega_{\gamma}(f) (\log r - \log |\gamma|).$$

Similarly, we denote by $\overline{Z}(r, f)$ the counting function of zeros of f in \mathbb{E} (resp. in $d(0, R^{-})$), ignoring multiplicities, and set

$$\overline{Z}(r,f) = \sum_{\omega_{\gamma}(f) > 0, |\gamma| \le r} (\log r - \log |\gamma|).$$

In the same way, we set $N(r, f) = Z\left(r, \frac{1}{f}\right)$ (resp. $\overline{N}(r, f) = \overline{Z}\left(r, \frac{1}{f}\right)$) to denote the counting function of poles of f in \mathbb{E}

or in $d(0, R^{-})$), counting multiplicity (resp. ignoring multiplicity).

If f admits a zero of order s at 0, we can make a change of origin or count the zero at 0 by adding $s \log r$ and similarly, if f admits a pole at 0 of order s, we can make a change of origin or count the pole at 0 by adding $-s \log r$.

Let $f \in \mathcal{M}(\mathbb{C})$. Given r > 0, we set

$$m(r,f) = \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta$$

and the function T(r, f) = m(r, f) + N(r, f) is called the characteristic function of f.

Now, let $f \in \mathcal{M}(\mathbb{I}K)$ (resp. let $f \in \mathcal{M}(d(0, R^{-}))$). We set $T(r, f) = \max(Z(r, f), N(r, f))$ and T(r, f) is called the characteristic function of f again.

Let $f \in \mathcal{M}(\mathbb{E})$. A function $\alpha \in \mathcal{M}(\mathbb{E})$ is called a small function with respect to f, if it satisfies

$$\lim_{r \to +\infty} \frac{T(r, \alpha)}{T(r, f)} = 0.$$

We denote by $\mathcal{M}_f(\mathbb{E})$ the set of small meromorphic functions with respect to f in \mathbb{E} (it is easily checked that $\mathcal{M}_f(\mathbb{E})$ is subfield of $\mathcal{M}(\mathbb{E})$).

Similarly, let $f \in \mathcal{M}(d(a, R^{-}))$. A function $\alpha \in \mathcal{M}(d(a, R^{-}))$ is called a small function with respect to f, if it satisfies

$$\lim_{r \to R^-} \frac{T(r, \alpha)}{T(r, f)} = 0.$$

We denote by $\mathcal{M}_f(d(a, R^-))$ the set of small meromorphic functions with respect to f in $d(a, R^-)$ (similarly, $\mathcal{M}_f(d(a, R^-))$ is subfield of $\mathcal{M}(d(a, R^-))$).

Remark: For simplicity, we have kept the same notation on \mathbb{C} and on $\mathbb{I}K$ for counting functions of zeros and poles of a meromorphic function.

Now, we must examine polynomials of uniqueness in order to give some sufficient conditions to get polynomials P such that, if f'P'(f) and g'P'(g) share a small meromorphic function, then f = g.

Notation: Let $P \in \operatorname{I\!F}[x] \setminus \operatorname{I\!F}$ and let $\Xi(P)$ be the set of zeros c of P' such that $P(c) \neq P(d)$ for every zero d of P' other than c. We denote by $\Phi(P)$ its cardinal.

Theorem H was first proved by Julie Wang:

Theorem H: Let $P \in \mathbb{K}[x]$ be such that P' has exactly two distinct zeros γ_1 of order c_1 and γ_2 of order c_2 . Then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$. Moreover, if $\min\{c_1, c_2\} \geq 2$, then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$.

Remark: If deg(P) = t then $\Phi(P) \le t - 1$. If $\Phi(P) < l$, then $l \ge \Phi(P) + 2$.

We have the following results:

Theorem J: Let $P \in \mathbb{K}[x]$.

If $\Phi(P) \geq 2$ then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$.

If $\Phi(P) \geq 3$ then P is a polynomial of uniqueness for both $\mathcal{A}_u(d(a, R^-))$ and $\mathcal{M}(\mathbb{K})$.

If $\Phi(P) \geq 4$ then P is a polynomial of uniqueness for $\mathcal{M}_u(d(a, R^-))$.

Theorem L: Let $P \in \mathrm{I\!K}[x]$ be of degree $n \ge 6$ and such that P' only has two distinct zeros, one of them being of order 2. Then P is a polynomial of uniqueness for $\mathcal{M}_u(d(0, R^-))$.

Concerning the field \mathbb{C} , from various results due to Ta Thi Hoai An Julie Wang, Pitman Wong, Frank and Reinder and me, we have the following theorems:

Theorem M: Let $P \in \mathbb{C}[X]$ be such that P' has exactly two distinct zeros γ_1 of order c_1 and γ_2 of order c_2 with $\min\{c_1, c_2\} \ge 2$ and $\max(c_1, c_2) \ge 3$. Then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$.

Theorem S: Let $P \in \mathbb{C}[X]$. If $\Phi(P) \ge 4$ then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$.

The following Theorem T holds both on the field IK and on \mathbbm{C} and is useful in the proofs of Theorems 1-10.

Theorem T: Let $Q(X) = (X - a_1)^n \prod_{i=2}^l (X - a_i)^{k_i} \in \mathbb{E}[x]$ $(a_i \neq a_j, \forall i \neq j)$ with $l \geq 2$ and $n \geq \max\{k_2, ..., k_l\}$ and let $k = \sum_{i=2}^l k_i$. Let $f, g \in \mathcal{M}(\mathbb{E})$ be transcendental (resp. $f, g \in \mathcal{M}_u(d(0, R^-)))$) such that the function $\theta = f'Q(f)g'Q(g)$ is a small function with respect to f and g. We have the following: If l = 2 then n belongs to $\{k, k+1, 2k, 2k+1, 3k+1\}$.

If l = 3 then n belongs to $\{\frac{k}{2}, k+1, 2k+1, 3k_2 - k, ..., 3k_l - k\}$. If $l \ge 4$ then n = k + 1.

If θ is a constant in \mathbb{K} and if $f, g \in \mathcal{M}(\mathbb{K})$ then n = k + 1.

Remark: We don't know any pair of meromorphic functions f, g and a polynomial Q such that f'Q(f)g'Q(g) is a small function with respect to f and g.

Sharing values problems for meromorphic functions

The problem of value sharing a small function by functions of the form f'P'(f) was examined first when P was just of the form x^n . More recently, it was examined when P was a polynomial such that P' had exactly two distinct zeros, both in complex analysis and in p-adic analysis. In p-adic analysis we have the opportunity to use the Nevanlinna theory not only in the whole field IK but also inside a disk $d(a, R^-)$. Actually solving a values sharing problem involving

f'P'(f), g'P'(g) requires to know polynomials of uniqueness P for meromorphic functions.

We first considered functions $f, g \in \mathcal{M}(\mathbb{IK})$ or $f, g \in \mathcal{M}(d(a, R^{-}))$ and ordinary polynomials P: we only had to assume certain hypotheses on the multiplicity order of the zeros of P': that was published in Buletin des Sciences Mathematiques. Next we dealt with the same problem with functions

in \mathbb{C} (that just appeared in Indagationes). In those papers, we had to assume that $n \geq \sum_{j=2}^{l} k_j + 3$ (or $n \geq \sum_{j=2}^{l} k_j + 2$ when $f, g, \alpha \in \mathcal{M}(\mathbb{K})$). Here thanks to Propositions 2 and 3, we can replace that hypothesis by Hypothesis (G).

We can now state our main theorems. **Theorem 1:** Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{E})$ (resp. for $\mathcal{M}_u(d(a, \mathbb{R}^-))$) satisfying Hypothesis (G). Let

$$P' = bX^n \prod_{i=2}^{l} (X - a_i)^{k_i}$$

with $b \in \mathbb{E}^*$, $l \ge 2$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose *P* satisfies the following conditions: $n \ge 10 + \max(0, 5 - k_2) + \sum_{i=2}^{l} \max(0, 4 - k_i),$

if
$$l = 2$$
, then $n \neq k$, $k + 1$, $2k$, $2k + 1$, $3k + 1$,
if $l = 3$, then $n \neq \frac{k}{2}$, $k + 1$, $2k + 1$, $3k_i - k \ \forall i = 2, 3$,
if $l \ge 4$, then $n \neq k + 1$.

Let $f, g \in \mathcal{M}(\mathbb{E})$ (resp. $f, g \in \mathcal{M}_u(d(a, R^-)))$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ (resp. $\alpha \in \mathcal{M}_f(d(a, R^-)) \cap \mathcal{M}_g(d(a, R^-)))$ be non-identically zero. If f'P'(f) and g'P'(g)share α C.M., then f = g.

By Theorem J, we have Corollary 1.1:

Corollary 1.1 Let $P \in \mathbb{K}[x]$ satisfy $\Phi(P) \geq 3$ and Hypothesis (G), let $P' = bX^n \prod_{i=2}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \geq 3$, $k_i \geq k_{i+1}, \ 2 \leq i \leq l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose P satisfies the following conditions: $n \geq 10 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i),$ if l = 3, then $n \neq \frac{k}{2}, \ k+1, \ 2k+1, \ 3k_i - k \ \forall i = 2, 3,$ if $l \geq 4$, then $n \neq k+1$. Let $f, \ g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be non-identically zero.

If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example: Let

$$P(X) = \frac{X^{20}}{20} - \frac{X^{19}}{19} - \frac{4X^{18}}{18} + \frac{4X^{17}}{17} + \frac{6X^{16}}{16} - \frac{6X^{15}}{15} - \frac{4X^{14}}{14} + \frac{4X^{13}}{13} + \frac{X^{12}}{12} - \frac{X^{11}}{11} + \frac{1}{11} + \frac$$

We can check that $P'(X) = X^{10}(X-1)^5(X+1)^4$ and

$$P(0) = 0, \ P(1) = \sum_{j=0}^{4} C_4^j (-1)^j \left(\frac{1}{10+2j} - \frac{1}{9+2j}\right),$$

$$P(-1) = -\sum_{j=0}^{4} C_4^j \left(\frac{1}{10+2j} + \frac{1}{9+2j}\right)$$

Consequently, we have $\Phi(P) = 3$ and we check that Hypothesis (G) is satisfied. Now, let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be non-identically zero. If f'P'(f)and g'P'(g) share α C.M., then f = g.

Remark: In that example, we have n = 10, k = 9. Applying our previous work, a conclusion would have required $n \ge k + 2 = 11$.

Corollary 1.2 Let $P \in \mathbb{K}[X]$ satisfy $\Phi(P) \geq 4$ and Hypothesis (G), let $P' = bX^n \prod_{i=2}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $k_i \geq$

 $k_{i+1}, \ 2 \leq i \leq l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose P satisfies the following conditions:

$$n \ge 10 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i),$$

 $n \neq k+1.$

Let $f, g \in \mathcal{M}_u(d(a, R^-))$ and let $\alpha \in \mathcal{M}_f(d(a, R^-)) \cap \mathcal{M}_g(d(a, R^-))$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Corollary 1.3 Let $P \in \mathbb{C}[X]$ satisfy $\Phi(P) \geq 4$ and Hypothesis (G), let $P' = bX^n \prod_{i=2}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $k_i \geq k_{i+1}$, $2 \leq i \leq l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose P satisfies the following conditions:

$$n \ge 10 + \max(0, 5 - k_2) + \sum_{i=3}^{t} \max(0, 4 - k_i),$$

 $n \ne k + 1.$

Let $f, g \in \mathcal{M}(\mathbb{C})$ and let $\alpha \in \mathcal{M}_f(\mathbb{C}) \cap \mathcal{M}_g(\mathbb{C})$ be nonidentically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example: Let

$$P(X) = \frac{X^{24}}{24} - \frac{10X^{23}}{23} + \frac{36X^{22}}{22} - \frac{40X^{21}}{21} - \frac{74X^{20}}{20} + \frac{226X^{19}}{19}$$
$$-\frac{84X^{18}}{18} - \frac{312X^{17}}{17} + \frac{321X^{16}}{16} + \frac{88X^{15}}{15}$$
$$-\frac{280X^{14}}{14} + \frac{48X^{13}}{13} + \frac{80X^{12}}{12} - \frac{32X^{11}}{11}$$

We can check that $P'(X) = X^{10}(X-2)^5(X+1)^4(X-1)^4$. Next, we have P(2) < -134378, $P(1) \in]-2, 11; -2, 10[$, $P(-1) \in]2, 18; 2, 19[$. Therefore, P(0), P(1), P(-1), P(2) are all distinct, hence $\Phi(P) = 4$. Moreover, Hypothesis (G) is satisfied. Now, let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. let $f, g \in \mathcal{M}_u(d(a, R^-))$), resp. let $f, g \in \mathcal{M}(\mathbb{C})$) and let $\alpha \in \mathcal{M}(\mathbb{K})$ (resp. let $\alpha \in \mathcal{M}(d(a, R^-))$), resp. let $\alpha \in \mathcal{M}(\mathbb{C})$) be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Remark: In that example, we have n = 10, k = 13. Applying Theorem 4 in the paper in Bulletin des Sciences or Theorem 1 in the paper in Indagationes, a conclusion would have required $n \ge k + 3 = 16$.

When l = 2, Hypothesis (G) is automatically satisfied. So, by Theorem H we also have Corollary 1.4.

And by Theorem M we also have Corollary 1.4

Corollary 1.4 Let $P \in \mathbb{C}[X]$ be such that P' is of the form $bX^n(X-a_2)^k$ with $\min(k,n) \ge 2$ and $\max(n,k) \ge 3$. Suppose that P satisfies the further conditions:

 $n \ge 10 + \max(0, 5 - k),$

 $n \neq k+1, 2k, 2k+1, 3k+1.$

Let $f, g \in \mathcal{M}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{C}) \cap \mathcal{M}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share $\alpha \ C.M.$, then f = g.

Remark: Thanks to Corollary 1.4, we can take k = 8, n = 10 which we couldn't do in the paper in Indagationes.

Example: Let $P(X) = \frac{X^6}{6} - \frac{2X^5}{5} + \frac{X^4}{4}$. Then $P'(X) = X^3(X-1)^2$.

Given $f, g \in \mathcal{M}(\mathbb{C})$ transcendental such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{M}(\mathbb{C})$ C.M., we have f = g.

Theorem 2: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ satisfying Hypothesis (G), let

$$P' = bX^n \prod_{i=2}^{l} (X - a_i)^{k_i} \text{ with } b \in \mathbb{K}^*, \ l \ge 2, \ k_i \ge k_{i+1}, \ 2 \le k_$$

 $i \leq l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose P satisfies the following conditions:

$$n \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i),$$

if $l = 2$, then $n \ne k$, $k + 1$, $2k$, $2k + 1$, $3k + 1$,
if $l = 3$, then $n \ne \frac{k}{2}$, $k + 1$, $2k + 1$, $3k_i - k \ \forall i = 2, 3$,
if $l \ge 4$, then $n \ne k + 1$.

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Corollary 2.1 Let $P \in \mathbb{K}[X]$ satisfy $\Phi(P) \geq 3$ and Hypothesis (G), let $P' = bX^n \prod_{i=2}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $k_i \geq k_{i+1}$, $2 \leq i \leq l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose P satisfies

the following conditions:

$$n \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i),$$

if $l = 3$, then $n \ne \frac{k}{2}$, $k + 1$, $2k + 1$, $3k_i - k \ \forall i = 2, 3$.
if $l \ge 4$, then $n \ne k + 1$.

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If f'P'(f) and g'P'(g) share α C.M., then f = g.

When α is a constant and $\mathbb{E} = \mathbb{K}$, we can simplify the conditions on n and k,

Theorem 3: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ satisfying Hypothesis (G), let

$$P' = bX^n \prod_{i=2}^{l} (X - a_i)^{k_i} \text{ with } b \in \mathbb{K}^*, \ l \ge 2, \ k_i \ge k_{i+1}, \ 2 \le k_$$

 $i \leq l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose P satisfies the following conditions:

$$n \ge 9 + \sum_{i=3}^{l} \max(0, 4 - k_i) + \max(0, 5 - k_2),$$

$$n \ne k + 1.$$

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Remark: In Theorem 3 of the paper in Indagationes, we obtained $n \ge k+2$. Here we just have $n \ne k+1$ instead.

Corollary 3.1 Let $P \in \mathbb{K}[X]$ satisfy $\Phi(P) \geq 3$ and Hypothesis (G), let $P' = bX^n \prod_{i=2}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $k_i \geq k_{i+1}$, $1 \leq i \leq l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose P satisfies the following conditions:

$$n \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{r} \max(0, 4 - k_i),$$

 $n \ne k + 1.$

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

And by Theorem A, we have Corollary 3.2

Corollary 3.2 Let $P \in \mathbb{K}[X]$ be such that P' is of the form $bX^n(X-a_2)^k$ with $k \ge 2$ and with $b \in \mathbb{K}^*$ and $k \le n$. Suppose P satisfies the following conditions:

 $n \ge 9 + \max(0, 5 - k),$

 $n \neq k+1$,

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Remark: In Corollary 3.2 of the paper published in Bulletin des Sciences, we obtained $n \ge k+2$ (with an additional condition that said $n \ne 2k+1$, 3k+1 but actually this is useless and just comes from a misprint). So, here we have an improvement with the hypothesis $n \ne k+1$ instead of $n \ge k+2$. Actually, since $k \le n$, we obtain the additional hypothesis n = k.

Example: Let

$$P(X) = \frac{X^{19}}{19} - \frac{X^{18}}{18} - \frac{4X^{17}}{17} + \frac{4X^{16}}{16} + \frac{6X^{15}}{15} - \frac{6X^{14}}{14} - \frac{4X^{13}}{13} + \frac{4X^{12}}{12} + \frac{X^{11}}{11} - \frac{X^{10}}{10}$$

We can check that $P'(X) = X^9(X-1)^5(X+1)^4$ and

$$P(0) = 0, \ P(1) = \sum_{j=0}^{4} C_4^j (-1)^j \left(\frac{1}{9+2j} - \frac{1}{8+2j}\right)$$

$$P(-1) = -\sum_{j=0}^{4} C_4^j \left(\frac{1}{9+2j} + \frac{1}{8+2j}\right)$$

Consequently, we can check that $\Phi(P) = 3$ and that Hypothesis (G) is satisfied. Now, let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathbb{K}^*$. If f'P'(f) and g'P'(g) share α C.M., then f = g.

For memory, here we can recall and summarize the following Theorems 4, 5, 6, 7 and Corollaries 4.1 and 5.1. Theorem 4 is partially given in [4] and partially given in [5]. Theorem 5 is given in [4]. Theorems 6 is given in [4] and Theorem 7 is given in [5]. We can not improve them since the inequality $n \ge k+3$ is satisfied in each statement.

Theorem 4: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{E})$ (resp. for $\mathcal{M}_u(d(a, R^-))$) satisfying Hypothesis (G). Let P' be of the form $bX^n \prod_{i=2}^{l} (X - a_i)$ with $l \ge 3$, $b \in \mathbb{K}^*$, satisfying: $n \ge l + 10$.

Let $f, g \in \mathcal{M}(\mathbb{E})$ be transcendental (resp. $f, g \in \mathcal{M}_u(d(a, R^-)))$) and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ (resp. $\alpha \in \mathcal{M}_f(d(a, R^-)) \cap \mathcal{M}_g(d(a, R^-)))$ be non-identically zero. If f'P'(f) and g'P'(g)share α C.M., then f = g.

Corollary 4.1 Let $P \in \mathbb{K}[X]$ satisfy $\Phi(P) \geq 3$ (resp. $\Phi(P) \geq 4$ and be such that P' is of the form $bX^n \prod_{i=2}^{l} (X - a_i)$ with $l \geq 3$ (resp. $l \geq 4$), $b \in \mathbb{K}^*$, satisfying $n \geq l + 10$. Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. let $f, g \in \mathcal{M}_u(d(a, \mathbb{R}^-)))$) and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ (resp. $\alpha \in \mathcal{M}_f(d(a, \mathbb{R}^-)) \cap \mathcal{M}_g(d(a, \mathbb{R}^-)))$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g. **Theorem 5:** Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ such that P' is of the form

$$P' = bX^n \prod_{i=2}^{l} (X - a_i) \text{ with } l \ge 3, b \in \mathbb{K}^* \text{ satisfying } n \ge l + 9.$$

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function or a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Corollary 5.1 Let $P \in \mathbb{IK}[X]$ be such that $\Phi(P) \geq 3$ and be of the form

$$P' = bX^n \prod_{i=2}^{l} (X - a_i) \text{ with } l \ge 3, b \in \mathbb{K}^* \text{ satisfying } n \ge l + 9.$$

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function or a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Remark: In Theorems 4 and 5 and Corollaries 4.1 and 5.1, it is useless to specify $n \neq k+1$ and if l = 3, $n \neq \frac{k}{2}$, k + 1, 2k + 1, $3k_i - k$... because these condition are automatically satisfied due to the hypotheses $ln \geq l+9$ and $k_i = 1 \forall i$.

Theorem 6: Let $f, g \in \mathcal{M}(\mathbb{E})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{E}) \cap \mathcal{M}_g(\mathbb{E})$ be non-identically zero. Let $a \in \mathbb{K} \setminus \{0\}$. If $f'f^n(f-a)$ and $g'g^n(g-a)$ share the function α C.M. and if $n \geq 12$, then either f = g or there exists $h \in \mathcal{M}(\mathbb{E})$ such that $f = \frac{a(n+2)}{n+1} \left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)h$ and $g = \frac{a(n+2)}{n+1} \left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)$. Moreover, if $\mathbb{E} = \mathbb{K}$ and if α is a constant or a Moebius function, then the conclusion holds whenever $n \geq 11$. Inside an open disk, we have a version similar to the general case in the whole field.

Theorem 7: Let $f, g \in \mathcal{M}_u(d(0, R^-))$, and let $\alpha \in \mathcal{M}_f(d(0, R^-)) \cap \mathcal{M}_g(d(0, R^-))$ be non-identically zero. Let $a \in \mathbb{I} \setminus \{0\}$. If $f'f^n(f-a)$ and $g'g^n(g-a)$ share the function α C.M. and $n \ge 12$, then either f = g or there exists $h \in$ $\mathcal{M}(d(0, R^-))$ such that $f = \frac{a(n+2)}{n+1} \left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)h$ and g = $\frac{a(n+2)}{n+1} \left(\frac{h^{n+1}-1}{h^{n+2}-1}\right).$

Remark: As noticed in [4], in Theorems 7 and 8, the second conclusion does occur. Indeed, let $h \in \mathcal{M}(\mathbb{K})$ (resp. let $h \in \mathcal{M}_u(d(0, R^-)))$. Now, let us precisely define f and gas: $g = (\frac{n+2}{n+1}) \left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)$ and f = hg. Then we can see that the polynomial $P(y) = \frac{1}{n+2}y^{n+2} - \frac{1}{n+1}y^{n+1}$ satisfies P(f) = P(g), hence f'P'(f) = g'P'(g), therefore f'P'(f) and g'P'(g) trivially share any function.

Sharing values problems for analytic functions

First we can improve results given in Bulletin des Sciences concerning p-adic analytic functions. In the paper given for Proceedings of the 12th Conference on p-adic Functional Analysis we gave the following theorem 8:

Theorem 8: Let $P(X) \in \mathbb{K}[X]$ be a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$ (resp. for $\mathcal{A}(d(a, R^{-})))$, let $P'(X) = \prod_{i=1}^{l} (X - a_i)^{k_i}$ and let $f, g \in \mathcal{A}(\mathbb{K})$ be transcendental (resp. let $f, g \in \mathcal{A}_u(d(a, R^{-})))$ such that f'P'(f) and g'P'(g) share a small function $\alpha \in$ $\mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$ (resp. $\alpha \in \mathcal{A}_f(d(, R^{-})) \cap \mathcal{A}_g(d(a, R^{-})))$). If $\sum_{i=1}^{l} k_i \geq 2l+2$ then f = g. Moreover, if f, g belong to $\mathcal{A}(\mathbb{K})$,

if
$$\alpha$$
 is a constant and if $\sum_{i=1}^{l} k_i \ge 2l+1$ then $f = g$.

Corollary 8.1: Let $P(X) \in \mathbb{K}[X]$ be such that $\Phi(P) \geq 2$, let $P'(X) = \prod_{i=1}^{l} (X - a_i)^{k_i}$ and let $f, g \in \mathcal{A}(\mathbb{K})$ be transcendental such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$. If $\sum_{i=1}^{l} k_i \geq 2l + 2$ then f = g. Moreover, if α is a constant and if $\sum_{i=1}^{l} k_i \geq 2l + 1$ then f = g. **Example:** Let \mathcal{E} be the algebraic equation:

$$X^{14}\left(\frac{1}{14} - \frac{1}{13}\right) - X^{12}\left(\frac{1}{12} - \frac{1}{11}\right) - \left(\frac{1}{14} - \frac{1}{13}\right) + \frac{1}{12} - \frac{1}{11} = 0$$

and let $c \in \mathbb{K}$ be a solution of \mathcal{E} . Let

$$P(X) = \frac{X^{14}}{14} - \frac{cX^{13}}{13} - \frac{X^{12}}{12} + \frac{cX^{11}}{11}$$

Then we can check that $P'(X) = X^{10}(X-1)(X+1)(X-c)$, $P(1) = P(c) \neq 0$ and that $P(1) \neq 0$, $P(-1) \neq 0$, $P(1) + P(-1) = \frac{1}{7} - \frac{1}{6}$, and $P(-1) - P(1) = 2c\left(\frac{1}{11} - \frac{1}{13}\right)$, hence $P(-1) \neq P(c)$. Consequently, $\Phi(P) = 2$. Consequently, we can apply Corollary 8.1 and show that if f'P'(f) and g'P'(g)share a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$, then f = g.

Remark: Recall Hypothesis (F) due to H. Fujimoto. A polynomial Q is said to satisfy Hypothesis (F) if the restriction of Q to the set of zeros of Q' is injective. In the last example, we may notice that Hypothesis (F) is not satisfied by P.

Corollary 8.2: Let $P(X) \in \mathbb{K}[X]$ be such that $\Phi(P) \geq 3$, let $P'(X) = \prod_{i=1}^{l} (X - a_i)^{k_i}$ and let $f, g \in \mathcal{A}_u(d(a, R^-))$ be such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{A}_f(d(a, R^-)) \cap \mathcal{A}_g(d(a, R^-))$. If $\sum_{i=1}^{l} k_i \geq 2l+2$ then f = g. **Corollary 8.3:** Let $P(X) \in \mathbb{K}[X]$ be such that $\Phi(P) \geq 2$, (resp. $\Phi(P) \geq 3$) be such that $P'(X) = X^n \prod_{i=2}^{l} (X - a_i)$ with $l \geq 3$ and let $f, g \in \mathcal{A}(\mathbb{K})$ (resp. $f, g \in \mathcal{A}_u(d(a, R^-)))$) be such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap$ $\mathcal{A}_g(\mathbb{K})$ (resp. $\alpha \in \mathcal{A}_f(d(a, R^-)) \cap \mathcal{A}_g(d(a, R^-)))$). If $n \geq l+3$ then f = g. Moreover, if f, g belong to $\mathcal{A}(\mathbb{K})$, if α is a constant and if $n \geq l+2$ then f = g.

Concerning complex analytic functions in \mathbb{C} , we can improve previous results.

Theorem 9: Let P be a polynomial of uniqueness for $\mathcal{A}(\mathbb{C})$ satisfying Hypothesis (G), let

$$P' = bX^{n} \prod_{i=2}^{l} (X - a_{i})^{k_{i}} \text{ with } b \in \mathbb{C}^{*}, \ l \geq 2, \ k_{i} \geq k_{i+1}, \ 2 \leq i \leq l-1 \text{ and let } k = \sum_{i=2}^{l} k_{i}. \text{ Suppose } P \text{ satisfies } n \geq 5 + \max(0, 5 - k_{2}) + \sum_{i=3}^{l} \max(0, 4 - k_{i})$$

Let $f, a \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_{f}(\mathbb{C}) \cap$

Let $f, g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_f(\mathbb{C}) \cap \mathcal{A}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

By Proposition 3, we have Corollary 9.1:

Corollary 9.1 Let $P \in \mathbb{C}[X]$ satisfy satisfying Hypothesis (G), let $P' = bX^n \prod_{i=2}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{C}^*$, $k_i \ge k_{i+1}$, $1 \le i \le l-1$ and let $k = \sum_{i=2}^{l} k_i$. Suppose P satisfies $n \ge 5 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i),$

Let $f, g \in \mathcal{M}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{C}) \cap \mathcal{M}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share $\alpha \ C.M.$, then f = g.

And by Proposition 2 we also have Corollary 9.2

Corollary 9.2 Let $P \in \mathbb{C}[X]$ be such that P' is of the form $bX^n(X-a)^k$ with $\min(k,n) \ge 2$ and $\max(n,k) \ge 3$. Suppose that P satisfies $n \ge 5 + \max(0, 5-k)$,

Let $f, g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_f(\mathbb{C}) \cap \mathcal{A}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example: Let

$$P(X) = \frac{X^{11}}{11} + \frac{5X^{10}}{10} + \frac{10X^9}{9} + \frac{10X^8}{8} + \frac{5X^7}{7} + \frac{X^6}{6}$$

Then $P'(X) = X^5(X+1)^5$. We can apply Corollary 9.2: given $f, g \in \mathcal{A}(\mathbb{C})$ transcendental such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{M}(\mathbb{C})$ C.M., we have f = g.

Remark: If we had applied Theorem 1 in the paper in Indagationes, with k = 5, we should have taken $n \ge k + 2$, hence $n \ge 7$.

When all k_i are equal to 1, we can obtain a better formulation:

Theorem 10: Let P be a polynomial of uniqueness for $\mathcal{A}(\mathbb{C})$ satisfying Hypothesis (G), such that P' is of the form

$$bX^n \prod_{i=2}^{n} (X-a_i)$$
 with $l \ge 3$, $b \in \mathbb{C}^*$, satisfying $n \ge l+5$.

Let $f, g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_f(\mathbb{C}) \cap \mathcal{A}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

By Proposition 3, we have Corollary 10.1:

1

Corollary 10.1 Let $P \in \mathbb{C}[X]$ satisfy $\Phi(P) \ge 4$ and satisfy

Hypothesis (G) and be such that P' is of the form $bX^n \prod_{i=2}^{n} (X - a_i)$

and $b \in \mathbb{C}^*$, satisfying $n \ge l+5$. Let $f, g \in \mathcal{A}(\mathbb{C})$ be transcendental and let $\alpha \in \mathcal{A}_f(\mathbb{C}) \cap \mathcal{A}_g(\mathbb{C})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example: Let $P(x) = \frac{X^{13}}{13} - \frac{2X^{12}}{12} - \frac{X^{11}}{11} + \frac{2X^{10}}{10}$. Then $P'(X) = X^9(X-1)(X+1)(X-2)$. We check that: P(0) = 0, $P(1) = \frac{1}{13} - \frac{2}{12} - \frac{1}{11} + \frac{2}{10}$, $P(-1) = \frac{1}{13} + \frac{2}{12} - \frac{1}{11} - \frac{2}{10} \neq 0$, P(1). Further, we notice that and |P(1)| < 1, |P(-1)| < 1. Finally, $P(2) = \frac{2^{13}}{13} - \frac{2^{13}}{12} - \frac{2^{11}}{11} + \frac{2^{11}}{10} = -\frac{72704}{2145} > 33$ hence $P(2) \neq 0, P(1), P(-1)$. Then $\Phi(P) = 4$. So, P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$ and it clearly satisfies Hypothesis (G). Moreover, we have n = 9, l =4, so we can apply Corollary 10.1. Given $f, g \in \mathcal{A}(\mathbb{C})$ transcendental such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{A}(\mathbb{C})$ C.M., we have f = g.