ON *ρ*-ADIC GENETIC CODE AND BIO-INFORMATION

Branko Dragovich dragovich@ipb.ac.rs

Institute of Physics, University of Belgrade Belgrade, Serbia

International Workshop on p-Adic Methods for Modeling of Complex Systems ZiF, Bielefeld University 15.04 - 19. 04. 2013 Bielefeld – Germany

Introduction

- 2 DNA, RNA, Proteins, and Genetic Code
- 3 5-Adic space of 64 elements
- P-Adic structure of the genetic code
- p-Adically modified the Hamming distance
- Conclusions

э

1. Introduction

• Francis Crick (1916–2004), who together with James Watson discovered double helicoidal structure of DNA, in 1953 announced:

We have discovered the secret of life.

- However, the life has still many secrets.
- The genetic code is also a secret of life in the following sense:

We mainly know how to describe structure of the genetic code, but we don't know origin and evolution of its structure.

• I shall present here *p*-adic description of the genetic code structure.

1. Introduction

- Dragovich, B. and Dragovich, A.: A *p*-Adic Model of DNA Sequence and Genetic Code. *p*-Adic Numbers, Ultrametric Analysis and Applications, Vol. 1, No. 1, 34–41. (2009). [arXiv:q-bio.GN/0607018v1]
- Dragovich, B. and Dragovich, A.: *p*-Adic Modelling of the Genome and the Genetic Code. The Computer Journal, Vol. 53, No. 4, 432–442. (2010). [arXiv:0707.3043v1 [q-bio.OT]]
- Dragovich, B.: p-Adic Structure of the Genetic Code. NeuroQuantology, Vol. 9, No. 4, 716–727. (2011). [arXiv:1202.2353v1 [q-bio.OT]]
- Khrennikov A. and Kozyrev, S.: Genetic Code on a Diadic Plane. Physica A: Stat. Mech. Appl., Vol. 381, 265–272. (2007). [arXiv:q-bio/0701007]

1. DNA, RNA, Proteins, and Genetic Code

ZiF - 2013 B. Dragovich Talk at p-adic methods.2013, Bielefeld 5/32

Complex Structure of DNA

ZiF - 2013 B. Dragovich Talk at p-adic methods.2013, Bielefeld 6/32

・ロト ・ 日 ・ ・ ヨ ・ ・

DNA (1953)

・ロト ・ 日 ・ ・ ヨ ・ ・

ZiF - 2013 B. Dragovich Talk at *p*-adic methods.2013, Bielefeld 9/32

◆□→ ◆□→ ◆三→ ◆三→ 三三

DNA (Deoxyribonucleic acid)

・ロト ・四ト ・ヨト ・ヨト

Ribonucleic acid

Nucleotides: C, A, U (T), G

Codons: ordered triples of nucleotides

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

E

4 x 4 x 4 = 64 codons

ZiF - 2013 B. Dragovich Talk at *p*-adic methods.2013, Bielefeld 11/32

Amino acids

20 standard a.a. + Selenocysteine Pyrrolysine

・ロ・ ・ 四・ ・ 回・ ・ 日・

E

ZiF - 2013 B. Dragovich Talk at p-adic methods.2013, Bielefeld 12/32

◆□▶ ◆御▶ ◆注▶ ◆注▶

PROTEIN STRUCTURE (primary, secondary, tertiary, quaternary)

ZiF - 2013 B. Dragovich Talk at *p*-adic methods.2013, Bielefeld 14/32

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Protein syntheses in the ribosomes

ZiF - 2013 B. Dragovich Talk at *p*-adic methods.2013, Bielefeld 15/32

æ

From DNA to proteins using the GENETIC CODE

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

臣

- The standard genetic code was deciphered about 1965.
- The genetic code (GC) is connection between 64 codons, which are building blocks of the genes, and 20 amino acids, which are building blocks of the proteins.
- Mathematically: The genetic code is a map of 64 elements onto 21 element.
- In addition to coding amino acids, a few codons code stop signal, which is at the end of genes and terminates process of protein synthesis.
- Codons are ordered triples composed of C, A, U (T) and G nucleotides.
- Each codon presents an information which controls use of one of the 20 standard amino acids or stop signal in synthesis of proteins.

(日) (圖) (E) (E) (E)

• The GC is usually presented by a table.

► 4 Ξ ►

< 67 ▶

Another table for the GC.

Another representation of the GENETIC CODE

< ロ > < 部 > < き > < き > <</p>

- Why to investigate modelling of the genetic code?
- From mathematical point of view, the GC is a mapping of a set of 64 elements onto a set of 21 elements.
- There is in principle a huge number (more than 10⁸⁰) of possible mappings, but the genetic code is one definite mapping with a few (about 20) slight modifications.
- For modelling of the GC, the main problem is to find the corresponding structure of the space of 64 and 20 (or 21) elements.
- It will be demonstrated here that the set of 64 codons, and 20 amino acids, has *p*-adic structure, where p = 5 and 2.

・ロット (日) (日) (日) (日) (日)

Modeling of the Genetic Code

- G. Gamow (1904-1968): 3-nucleotide codons, diamond code (1954)
- F. Crick (1916-2004): comma-free code (1957)
- Yu. Rumer (1901-1985): first 2 nucleotides emphasized (1966), ...
- Swanson (1984), Rakocevic, ...
- J. Hornos and Y. Hornos (1993), Forger and Sachse (2000)
- Frappat, Sciarrino and Sorba (1998)
- p-adic approach: B. Dragovich and A. Dragovich (2006), Khrennikov and Kozyrev (2007), Bradley (2007)

<ロ> <同> <同> < 回> < 回> < □> <

臣

• The GC in the form of an ultrametric tree.

・ロ・ ・ 四・ ・ 回・ ・ 日・

• The GC in the form of an ultrametric tree.

p-Adic approach:Ultrametric Tree of Codons

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3. 5-Adic Space of 64 elements

- We introduce 64 natural numbers using 5-adic expansion
- From *p*-adic mathematics we use only *p*-adic distance
- We use operation which is change of digits, but without summation and multiplication
- We identify 5-adic space of 64 elements with 64 codons, and call it *p*-adic codon space and consider it as a simple illustration of bio-information system with *p*-adic structure.

A (1) < (2) < (3) < (4) < (4) </p>

3. 5-Adic Space of 64 elements

• We introduce the following set of 64 natural numbers:

$$C[64] = \{n_0 + n_1 \, 5 + n_2 \, 5^2 \equiv n_0 n_1 n_2 : n_i = 1, 2, 3, 4\}$$

5-adic distance

$$d_5(a,b) = |a_0 + a_1 5 + a_2 5^2 - b_0 - b_1 5 - b_2 5^2|_5$$

can be:

 With respect to the smallest 5-adic distance, there is clustering of C[64] into quadruplets.

A (10) × (10)

111	211	311	411
112	212	312	412
113	213	313	413
114	214	314	414
121	221	321	421
122	222	322	422
123	223	323	423
124	224	324	424
131	231	331	431
132	232	332	432
133	233	333	433
134	234	334	434
141	241	341	441
142	242	342	442
143	243	343	443
144	244	344	444

ZiF - 2013 B. Dragovich Talk at *p*-adic methods.2013, Bielefeld 26/32

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.

3. 5-Adic Space of 64 elements

- 2-adic distance between elements within 5-adic quadruplets
- denote elements of quadruplets by a, b, c, d, respectively. Then

1
$$d_2(a,c) = |(3-1) \cdot 5^2|_2 = |2|_2 |25|_2 = |2|_2 = \frac{1}{2}$$

²
$$d_2(b,d) = |(4-2) \cdot 5^2|_2 = |2|_2 |25|_2 = |2|_2 = \frac{1}{2}$$

3 in other cases $d_2(\cdot, \cdot) = 1$.

 by 5-adic and 2-adic distance we get 32 doublets which can be connected with the genetic code of human (vertebrate) mitochondria by identification

C (Cytosine) =1, A (Adenine) = 2, U (Uracil) = T (Thymine) = 3, G (Guanine) = 4.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

111 CCC Pro	211 ACC Thr	311 UCC Ser 312 UCA Ser 313 UCU Ser 314 UCG Ser	411 GCC Ala
112 CCA Pro	212 ACA Thr		412 GCA Ala
113 CCU Pro	213 ACU Thr		413 GCU Ala
114 CCG Pro	214 ACG Thr		414 GCG Ala
121 CAC His	221 AAC Asn	321 UAC Tyr	421 GAC Asp
122 CAA GIn	222 AAA Lys	322 UAA Ter	422 GAA Glu
123 CAU His	223 AAU Asn	323 UAU Tyr	423 GAU Asp
124 CAG GIn	224 AAG Lys	324 UAG Ter	424 GAG Glu
131 CUC Leu	231 AUC IIe	331 UUC Phe	431 GUC Val
132 CUA Leu	232 AUA Met	332 UUA Leu	432 GUA Val
133 CUU Leu	233 AUU IIe	333 UUU Phe	433 GUU Val
134 CUG Leu	234 AUG Met	334 UUG Leu	434 GUG Val
141 CGC Arg	241 AGC Ser	341 UGC Cys	441 GGC Gly
142 CGA Arg	242 AGA Ter	342 UGA Trp	442 GGA Gly
143 CGU Arg	243 AGU Ser	343 UGU Cys	443 GGU Gly
144 CGG Arg	244 AGG Ter	344 UGG₀ Trp	444 GGG Gly

ZiF - 2013 B. Dragovich

Talk at *p*-adic methods.2013, Bielefeld

28/32

4. *p*-Adic structure of the genetic code

- The genetic code of human (vertebrate) mitochondria can be viewed as the basic one
- Amino acids are coded by one, two or three codon doublets
- Standard genetic code can be obtained from this code by:
 - **1** 234 AUA: Met \rightarrow Ile
 - 2 242 AGA and 244 AGG : Ter \rightarrow Arg
 - 342 UGA : Trp \rightarrow Ter
- Other (about 20)known versions of the genetic code in some living systems can be also obtained from this one by its slight modification.
- These modifications are like broken symmetry in physics reality is realization of some broken symmetries.

◆□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶</p>

4. *p*-Adic structure of the genetic code

 Table : 20 standard amino acids with assigned 5-adic numbers become close to codon doublets.

11 Proline	21 Threonine	31 Serine	41 Alanine
12 Histidine	22 Asparagine	32 Tyrosine	42 Aspartate
13 Leucine	23 Isoleucine	33 Phenylalanine	43 Valine
14 Arginine	24 Lysine	34 Cysteine	44 Glycine
1 Glutamine	2 Methionine	3 Tryptophan	4 Glutamate

$$x = x_0 + x_1 5 \equiv x_0 x_1$$
, $x = x_0$, $x_i = 1, 2, 3, 4$.

4. *p*-Adically modified the Hamming distance

- Let $a = a_1 a_2 \cdots a_n$ and $b = b_1 b_2 \cdots b_n$ be two strings of equal length.
- Hamming distance between these two strings is $d_H(a,b) = \sum_{i=1}^n d(a_i,b_i)$, where $d(a_i,b_i) = 0$ if $a_i = b_i$, and $d(a_i,b_i) = 1$ if $a_i \neq b_i$.
- We introduce *p*-adically modified Hamming distance in the following way: $d_{pH}(a, b) = \sum_{i=1}^{n} d_p(a_i, b_i)$, where $d_p(a_i, b_i) = |a_i b_i|_p$ is *p*-adic distance between numbers a_i and b_i . When $a_i, b_i \in \mathbb{N}$ then $d_p(a_i, b_i) \le 1$. If also $a_i b_i \ne 0$ is divisible by *p* then $d_p(a_i, b_i) < 1$.
- In the case of strings as parts of DNA, RNA and proteins, this modified distance is finer and should be more appropriate than Hamming distance itself. For example, elements a_i and b_i can be nucleotides, codons and amino acids with above assigned natural numbers, and primes p = 2 and p = 5.

5. Conclusions

- Codons which are *p*-adically closest (the most similar) code the same amino acid.
- 5-adic and 2-adic distance describe structure of the codon space in the form of 32 doublets.
- To each doublet corresponds one amino acid in the vertebrate mitochondrial code.
- All versions of the genetic code can be viewed as slight modifications of the vertebrate mitochondrial code.
- *p*-Adic Hamming distance is introduced, which should be useful in alignments of strings of codons and strings of amino acids.

э.