p-Adic dynamical systems of Chebyshev polynomials

Bertin DIARRA, Djeidi SYLLA

March 21, 2013

Abstract

We study the behaviour of the iterates of the Chebyshev polynomials of the first kind in p-adic fields. In particular, we determine in the field of complex p-adic numbers for $p>2$, the periodic points of the p-th Chebyshev polynomial of the first kind. These periodic points are attractive points. We describe their basin of attraction. The classification of finite fields extensions of the field of p-adic numbers \mathbb{Q}_{p}, enables one to locate precisely, for any integer $\nu \geq 1$, the ν-periodic points of T_{p} : they are simple and the nonzero ones lie in the unit circle of the unramified extension of $\mathbb{Q}_{p},(p>2)$ of degree ν. This generalizes a result, stated by M. Zuber in his PhD thesis, giving the fixed points of T_{p} in the field $\mathbb{Q}_{p},(p>2)$.

1 Classical formulas for Chebyshev polynomials

Let $i=\sqrt{-1}$ and $\mathbb{Q}[i]$ the quadratic field over the tfield of the rational numbers. Let $\mathbb{Q}[i][[\theta]]$ (resp. $\mathbb{Q}[i]((\theta))$ be the algebra (resp. the field) of formal power series (resp. formal Laurent series) with indeterminate θ and cœefficients in $\mathbb{Q}[i]$.

Let us consider the following formal trigonometric series, elements of $\mathbb{Q}[i][[\theta]]$:

$$
\begin{gathered}
\exp (i \theta)=\sum_{k \geq 0} \frac{i^{k}}{k!} \theta^{k} \\
\cos (\theta)=\frac{\exp (i \theta)+\exp (-i \theta)}{2}=\sum_{k \geq 0} \frac{(-1)^{k}}{(2 k)!} \theta^{2 k} \\
\sin (\theta)=\frac{\exp (i \theta)-\exp (-i \theta)}{2 i}=\sum_{k \geq 1} \frac{(-1)^{k-1}}{(2 k+1)!} \theta^{2 k+1}
\end{gathered}
$$

One has $\exp (i \theta)=\cos (\theta)+i \sin (\theta)$. In the algebra of formal power series in two variables $\mathbb{Q}[i]\left[\left[\theta, \theta^{\prime}\right]\right]$, from the fact that $\exp \left(i\left(\theta+\theta^{\prime}\right)\right)=\exp (i \theta)+\exp \left(i \theta^{\prime}\right)$ one deduces the usual addition and substraction formulas for the formal trigonometric series, $\cos (\theta)^{2}+\sin (\theta)^{2}=1$, etc...

There exists a sequence of polynomials $\left(T_{n}\right)_{n \geq 0}$ such that $T_{n}(\cos \theta)=\cos (n \theta)$. The polynomial T_{n} is called the n-th Chebyshev polynomial of the first kind.

If m and n are positive integers one has $T_{m}\left(T_{n}(\cos (\theta))\right)=T_{m}(\cos (n \theta))=\cos (m n \theta)=T_{m n}(\cos (\theta))$. On the other hand since $\cos ((n+1) \theta)=\cos (n \theta) \cos (\theta)-\sin (n \theta) \sin (\theta)$ and $\cos ((n-1) \theta)=$ $\cos (n \theta) \cos (\theta)+\sin (n \theta) \sin (\theta)$, one sees that $T_{n+1}(\cos (\theta))+T_{n-1}(\cos (\theta))=T_{1}(\cos (\theta)) T_{n}(\cos (\theta))$. As a consequence, one has

Lemma 1 The sequence of Chebyshev polynomials of the first kind satisfies the following properties:

$$
\begin{array}{ll}
-(1)- & T_{0}=1, T_{1}(x)=x \\
-(2)- & T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \forall n \geq 1 \\
-(3)- & T_{m} \circ T_{n}=T_{m n}=T_{n} \circ T_{m}
\end{array}
$$

A consequence of the property (3) is that the sequence $\left(T_{n}\right)_{n \geq 0}$ is a commutative monoid with respect to the operation of composition, the identity element being $T_{1}=x$ and $T_{n}^{\circ k}=T_{n^{k}}, \forall n, k$.

Corollary 2 The polynomial T_{n} is of degree n, whose cofficients are integers with its leading coefficent equal to 2^{n-1}

Differentiating the relation $T_{n}(\cos \theta)=\cos (n \theta)$, one obtains $\frac{d}{d \theta} T_{n}(\cos (\theta))=-\sin (\theta) T_{n}^{\prime}(\cos (\theta))=$ $-n \sin (n \theta)$. Then $\left.T_{n}^{\prime}(\cos \theta)\right)=n \frac{\sin (n \theta)}{\sin (\theta)}$.
The sequence of Chebyshev polynomials of the second kind is the sequence of polynomials U_{n} such that $U_{n}(\cos (\theta))=\frac{\sin ((n+1) \theta)}{\sin (\theta)}$. Since $\sin ((n+1) \theta)+\sin ((n-1) \theta)=2 \cos (\theta) \sin (n \theta)$, one sees that $U_{n}(\cos (\theta))+U_{n-2}(\cos (\theta))=2 \cos (\theta) U_{n-1}(\cos (\theta))$.

Lemma 3 The sequence of Chebyshev polynomials of the second kind satisfies the following properties:
$-(1)-\quad U_{0}=1, U_{1}(x)=2 x$.
$-(2)-\quad U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x), \forall n \geq 1$. The degree of U_{n} is equal to n.
$-(3)-\quad T_{n}^{\prime}(x)=n U_{n-1}(x)$.

Let us do the change of variable by putting $\exp (i \theta)=y$. Then formally, the TChebyshev polynomials of first and second kinds are also given by substitution of the fraction $\frac{y+y^{-1}}{2}$:

$$
\begin{gathered}
T_{n}\left(\frac{y+y^{-1}}{2}\right)=\frac{y^{n}+y^{-n}}{2} \\
U_{n}\left(\frac{y+y^{-1}}{2}\right)=\frac{y^{n+1}-y^{-n-1}}{y-y^{-1}}
\end{gathered}
$$

One consequence is that for any integer $n \geq 0$, one has:

$$
T_{n}(-x)=(-1)^{n} T_{n}(x) \text { and } U_{n}(-x)=(-1)^{n} U_{n}(x)
$$

Let us do another change of variable $\frac{y+y^{-1}}{2}=x$, that is $y^{2}+1=2 x y \Longleftrightarrow(y-x)^{2}=$ $-\left(1-x^{2}\right)=i^{2}\left(1-x^{2}\right)$. The square roots of $\left(1-x^{2}\right)$ exist in the ring of formal power series $\mathbb{Q}[i][[x]]$, with one taken to be $\sqrt{1-x^{2}}=\sum_{\ell \geq 0}(-1)^{\ell}\binom{\frac{1}{2}}{\ell} x^{2 \ell}$. Therefore $y=x \pm i \sqrt{1-x^{2}}$. Putting $y=x+i \sqrt{1-x^{2}}$, one has $y^{-1}=x-i \sqrt{1-x^{2}}$ and

$$
T_{n}(x)=\frac{1}{2}\left(x+i \sqrt{1-x^{2}}\right)^{n}+\frac{1}{2}\left(x-i \sqrt{1-x^{2}}\right)^{n}
$$

Since $\left(x+i \sqrt{1-x^{2}}\right)^{n}=\sum_{m=0}^{n}\binom{n}{m} i^{m} x^{n-m}\left(1-x^{2}\right)^{\frac{m}{2}}=\sum_{2 m \leq n} \sum_{m=0}^{n}\binom{n}{2 m}(-1)^{m} x^{n-2 m}\left(1-x^{2}\right)^{m}+$
$i \sum_{2 m+1 \leq n}\binom{n}{m}(-1)^{m} x^{n-2 m-1}\left(1-x^{2}\right)^{\frac{2 m+1}{2}}$ and
$\left(x-i \sqrt{1-x^{2}}\right)^{n}=\sum_{2 m \leq n}\binom{n}{2 m}(-1)^{m} x^{n-2 m}\left(1-x^{2}\right)^{m}$
$-i \sum_{2 m+1 \leq n}\binom{n}{2 m+1}(-1)^{m} x^{n-2 m-1}\left(1-x^{2}\right)^{\frac{2 m+1}{2}}$, one obtains
$T_{n}(x)=\sum_{2 m \leq n}\binom{n}{2 m}(-1)^{m} x^{n-2 m}\left(1-x^{2}\right)^{m}$.
On the other hand $\left(1-x^{2}\right)^{m}=\sum_{k+\ell=m}\binom{m}{k}(-1)^{\ell} x^{2 \ell}$.
Then $T_{n}(x)=\sum_{2 k+2 \ell \leq n}\binom{n}{2 k+2 \ell}(-1)^{k+2 \ell}\binom{k+\ell}{k} x^{n-2 k-2 \ell} x^{2 \ell}=$ $=\sum_{2 k \leq n}(-1)^{k} \sum_{2 \ell \leq n}\binom{n}{2 k+2 \ell}\binom{k+\ell}{k} x^{n-2 k}$. That is

$$
T_{n}(x)=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} \sum_{\ell=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 k+2 \ell}\binom{k+\ell}{k} x^{n-2 k}
$$

By differentiating the relation $\sin (\theta) T_{n}^{\prime}(\cos (\theta))=n \sin (n \theta)$, one obtains $\cos (\theta) T_{n}^{\prime}(\cos (\theta))-\sin (\theta)^{2} T_{n}^{\prime \prime}(\cos (\theta))=n^{2} \cos (n \theta)$. Hence T_{n} satisfies the differential equation

$$
\left(1-x^{2}\right) T_{n}^{\prime \prime}(x)-x T_{n}^{\prime}(x)+n^{2} T_{n}(x)=0
$$

Hence, setting $T_{n}(x)=\sum_{k=0}^{\left[\frac{n}{2}\right]} a_{n, k} x^{n-2 k}$, one sees that
$(n-2 k+2)(n-2 k+1) a_{n, k-1}+4 k(n-k) a_{n, k}=0$.
And by telescoping, one obtains $a_{n, k}=(-1)^{k} 2^{n-2 k-1} \frac{n}{n-k}\binom{n-k}{k}$. Therefore

$$
\begin{equation*}
T_{n}(x)=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} 2^{n-2 k-1} \frac{n}{n-k}\binom{n-k}{k} x^{n-2 k} \tag{1}
\end{equation*}
$$

An obvious consequence is that for any $k \leq\left[\frac{n}{2}\right]$, one has the combinatorics equality

$$
\sum_{m=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 m+2 k}\binom{m+k}{m}=2^{n-2 k-1} \frac{n}{n-k}\binom{n-k}{k}
$$

Since $T_{n}^{\prime}(x)=n U_{n-1}(x)$, one has

$$
\begin{gathered}
U_{n-1}(x)=\frac{1}{n} \sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} 2^{n-2 k-1}(n-2 k) \frac{n}{n-k}\binom{n-k}{k} x^{n-2 k-1}, \text { which turns to be } \\
U_{n-1}(x)=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} 2^{n-2 k-1}\binom{n-2 k}{k} x^{n-2 k-1} . \text { And } \\
U_{n}(x)=\sum_{k=0}^{\left[\frac{n+1}{2}\right]}(-1)^{k} 2^{n-2 k}\binom{n-2 k+1}{k} x^{n-2 k} .
\end{gathered}
$$

2 Fixed points of the Chebyshev polynomial T_{n}

Let K be an algebraically closed field of characteristic 0 .
An element $x \in K$ is called a fixed point of T_{n} if $T_{n}(x)=x$. For $T_{0}=1$, the only fixed point is 1 and for $T_{1}=x$, any element of K is a fixed point. Hence in the sequel we assume that $n \geq 2$.

Set $x=\frac{y+y^{-1}}{2}$, then $T_{n}(x)=T_{n}\left(\frac{y+y^{-1}}{2}\right)=\frac{y^{n}+y^{-n}}{2}=\frac{y+y^{-1}}{2}$
$\Longleftrightarrow y^{2 n}+1=y^{n+1}-y^{n-1} \Longleftrightarrow\left(y^{n-1}-1\right)\left(y^{n+1}-1\right)=0 \Longleftrightarrow y^{n-1}=1$ or $y^{n+1}=1$.
Hence $y=\zeta$ is a $(n-1)$-th root of unity or $y=\eta$ is a $(n+1)$-th root of unity, and $x=\frac{\zeta+\zeta^{-1}}{2}$ or $x=\frac{\eta+\eta^{-1}}{2}$.

Let us notice that $1=\frac{y+y^{-1}}{2} \Longleftrightarrow 2 y=y^{2}+1 \Longleftrightarrow(y-1)^{2}=0 \Longleftrightarrow y=1$. It follows that $T_{n}(1)=1$, that is 1 is a fixed point of T_{n}.

Let us notice that this induces the following combinatorics equalities :

$$
\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} 2^{n-2 k-1} \frac{n}{n-k}\binom{n-k}{k}=1=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} \sum_{\ell=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 k+2 \ell}\binom{k+\ell}{k}
$$

If $x \neq 1$ is a fixed point of T_{n}, we notice above that:
$-\dagger-\quad x=\frac{\zeta+\zeta^{-1}}{2}$, with $\zeta \neq 1$ a $(n-1)$-th root of unity.
Then $T_{n}^{\prime}(x)=n U_{n-1}(x)=n \frac{\zeta^{n}-\zeta^{-n}}{\zeta-\zeta^{-1}}=n \frac{\zeta-\zeta^{-1}}{\zeta-\zeta^{-1}}=n$.
$-\dagger \dagger-\quad$ Or $x=\frac{\eta+\eta^{-1}}{2}$, with $\eta \neq 1$ a $(n+1)$-th root of unity.
Then $T_{n}^{\prime}(x)=n U_{n-1}(x)=n \frac{\eta^{n}-\eta^{-n}}{\eta-\eta^{-1}}=n \frac{\eta^{-1}-\eta}{\eta-\eta^{-1}}=-n$.

- †††- One has $U_{n-1}\left(\frac{y+y^{-1}}{2}\right)=\frac{y^{n}-y^{-n}}{y-y^{-1}}=\sum_{j=0}^{n-1} y^{n-2 j-1}$.

It follows that $U_{n-1}(1)=\sum_{j=0}^{n-1} 1=n$ and $T_{n}^{\prime}(1)=n U_{n-1}(1)=n^{2}$.
One deduces from the above that the fixed points of $T_{n}, n \geq 2$ are simple.
Furthermore, one has the combinatorics equalities:

$$
\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} 2^{n-2 k-1}\binom{n-2 k}{k}=n
$$

N.B.

Let n be a positive integer ≥ 2 and ν a positive integer ≥ 1. For the n-th Chebyshev polynomial of the first kind T_{n}, one has $T_{n}^{\circ \nu}=T_{n^{\nu}}$. Hence the ν-periodic points of T_{n} are the fixed points of the polynomial $T_{n^{\nu}}$.

Proposition 4 The fixed points of the n-th Chebyshev polynomial of the first kind $T_{n}, n \geq 2$ in the field of complex numbers \mathbb{C}, are the real numbers $\cos \left(\frac{2 k \pi}{n-1}\right), 0 \leq k \leq \frac{n-1}{2}$ and $\cos \left(\frac{2 \ell \pi}{n+1}\right), 0 \leq$ $\ell \leq \frac{n+1}{2}$.

They are repelling fixed points.

Proof

Indeed for any positive integer $n \geq 2$, the $(n-1)$-th roots of unity in \mathbb{C} are $\zeta_{k}=\exp \left(\frac{2 k \pi i}{n-1}\right), 0 \leq$ $k \leq n-1$. The fixed points of T_{n} associated to these $(n-1)$-th roots of unity are $x_{k}=\frac{\zeta_{k}+\zeta_{k}^{-1}}{2}=$ $\cos \left(\frac{2 k \pi}{n-1}\right), 0 \leq k \leq \frac{n-1}{2}$.
The other fixed points y_{ℓ} of T_{n} are the real parts $y_{\ell}=\frac{\eta_{\ell}+\eta_{\ell}^{-1}}{2}, 0 \leq \ell \leq \frac{n+1}{2}$ of the $(n+1)$-th roots of unity $\eta_{\ell}=\exp \left(\frac{2 \ell \pi i}{n+1}\right)$. Then $y_{\ell}=\cos \left(\frac{2 \ell \pi}{n+1}\right), 0 \leq \ell \leq \frac{n+1}{2}$.

For the fixed points $x_{k} \neq 1$, one has $T_{n}^{\prime}\left(x_{k}\right)=n U_{n-1}\left(x_{k}\right)=n$. Then $\left|T_{n}^{\prime}\left(x_{k}\right)\right|=n>1$. In the same way for the fixed points $y_{\ell} \neq 1$, one has $T_{n}^{\prime}\left(y_{\ell}\right)=n U_{n-1}\left(y_{\ell}\right)=-n$. Then $\left|T_{n}^{\prime}\left(y_{\ell}\right)\right|=n>1$.

On the other hand for the fixed point 1 , one has $T_{n}^{\prime}(1)=n U_{n-1}(1)=n^{2}$. Then $\left|T_{n}^{\prime}(1)\right|=n^{2}>1$. Hence one concludes that any fixed point x of T_{n} in the complex number field \mathbb{C} is a real number such that $|x| \leq 1$ and is a repelling point.

In contrast, in the field of complex p-adic numbers \mathbb{C}_{p} the fixed points cannot be repelling points.

Proposition 5 For n a positive integer ≥ 2, the fixed points x of T_{n} in the complex p-adic field \mathbb{C}_{p} are :
-(1)- indifferrent fixed points if p does not divide n
$-(2)-$ attractive fixed points if p divides n.

Proof

Let us remind that if $x \neq 1$ is a fixed point, then $T_{n}^{\prime}(x)= \pm n$ and for the fixed point $1, T_{n}^{\prime}(1)=$ n^{2}. Then if $p \nmid n$, one has for x a fixed point, one has $\left|T_{n}^{\prime}(x)\right|=1$ and x is an indifferent fixed point. If $p \mid n$, then for x a fixed point $\left|T_{n}^{\prime}(x)\right|<1$ and x is an attractive fixed point.

3 The p-adic dynamic of $T_{p}, p>2$

In this section we consider a prime number $p>2$. Let ν be an integer ≥ 1 and let us set $q=p^{\nu}$. According to the previous N.B., for the p-th Chebyshev polynomial of the first kind and for any positive integer r, one has $T_{p}{ }^{\circ r}=T_{p^{r}}$. In particular $T_{q}=T_{p}{ }^{\circ \nu}$ and the ν-periodic points of T_{p} are the fixed points of T_{q}.

Lemma 6 One has in the ring of polynomials $\mathbb{Z}_{p}[x]$, the congruence $T_{q}(x) \equiv x^{q}\left(\bmod p \mathbb{Z}_{p}[x]\right)$.

Proof
One has $T_{q}(x)=2^{q-1} x^{q}+\sum_{k=1}^{\left[\frac{q}{2}\right]}(-1)^{k} 2^{q-2 k-1} \frac{q}{q-k}\binom{q-k}{k} x^{q-2 k}$.
For $1 \leq k \leq\left[\frac{q}{2}\right]<q$, one has $v_{p}(k)<v_{p}(q)=\nu$, where v_{p} is the p-adic valuation, hence $v_{p}(q-k)=\min \left(v_{p}(k), v_{p}(q)\right)=v_{p}(k)$ and $v_{p}\left(\frac{q}{q-k}\right)=v_{p}(q)-v_{p}(q-k)=\nu-v_{p}(k)>$ 0. Since the binomial coefficients $\binom{q-k}{k}$ are integers and $\left|(-1)^{k} 2^{q-2 k-1}\right|=1$, one sees that $\left|(-1)^{k} 2^{q-2 k-1} \frac{q}{q-k}\binom{q-k}{k}\right| \leq\left|\frac{q}{q-k}\right|=|p|^{\nu-v_{p}(k)}<1$.
From little Fermat theorem, one deduces that $2^{q-1} \equiv 1(\bmod p)$.
One then obtains the congruence of the Lemma.
Let \mathbb{E}_{q} be the unique unramified field extension of \mathbb{Q}_{p} of degree ν. Its residue field is the finite field \mathbb{F}_{q} of q elements; the dimension $\left[\mathbb{F}_{q}: \mathbb{F}_{p}\right]$ of the extension $\mathbb{F}_{q} \mid \mathbb{F}_{p}$ is equal ν. The field \mathbb{E}_{q} is generated over \mathbb{Q}_{p} by a $(q-1)$-th primitive root of unity ξ (see for instance [3]) and \mathbb{E}_{q} contains the
group of $(q-1)$-th roots of unity which in fact are the Teichmüller representative of the nonzero elements of \mathbb{F}_{q}.

Since the extension $\mathbb{E}_{q} \mid \mathbb{Q}_{p}$ is unramified, its group of valuation is equal to those of \mathbb{Q}_{p}. Let $\Lambda_{q}=\left\{x \in \mathbb{E}_{q} /|x| \leq 1\right\}$ be the valuation ring of \mathbb{E}_{q} The maximal ideal Λ_{q} is equal to $p \Lambda_{q}$, that is p is an uniformizer of \mathbb{E}_{q}.

Proposition 7 Let p be a prime number >2 and $q=p^{\nu}, \nu \geq 1$.
Let $\xi_{0}=0$ and $\left(\xi_{\ell}\right)_{1 \leq \ell \leq q-1}$ be the finite sequence of the $(q-1)$-th roots of unity ordered in such a way that the $p-1$ first are the $(p-1)$-th roots of unity with $\xi_{\ell} \equiv \ell(\bmod p), 1 \leq \ell \leq p-1$
Any fixed point of of the q-th Chebyshev polynomial belong to Λ_{q}. They can be ordered in the form $0=w_{0}, w_{1}, \cdots, w_{\ell}, \cdots, w_{q-1}$ such that $w_{\ell} \equiv \xi_{\ell}(\bmod p), 0 \leq \ell \leq q-1$.

Proof

Since the maximal ideal of the valuation ring Λ_{q} is $p \Lambda_{q}$, the congruence in Lemma 6 can be extended in the form $T_{q}(x) \equiv x^{q}\left(\bmod p \Lambda_{q}[x]\right)$, and one has $T_{q}(x)-x \equiv x^{q}-x\left(\bmod p \Lambda_{q}[x]\right)$. It follows that $T_{q}^{\prime}(x)-1 \equiv-1\left(\bmod p \Lambda_{q}[x]\right)$. But the zeroes of the polynomial $x^{q}-x$ in the residue field $\Lambda_{q} / p \Lambda_{q}=\mathbb{F}_{q}$ are simple and are all the elements of this finite field. Applying Hensel lemma, one sees that the zeroes $w_{0}, w_{1}, \cdots, w_{\ell}, \cdots, w_{q-1}$ of the polynomial $T_{q}(x)-x$ are simple and the set of their classes $\left\{\bar{w}_{k}, 0 \leq \ell \leq q-1\right\}$, modulo $p \Lambda_{q}$ is equal to \mathbb{F}_{q}. Setting $w_{0}=0$ and ξ_{ℓ} the Teichmüller representative of \bar{w}_{ℓ} in Λ_{q}, which is a $(q-1)$-th root of unity, one has $w_{\ell} \equiv \xi_{\ell}(\bmod p)$.

An immediate consequence is that the absolute value of any nonzero fixed point of T_{q} is equal to 1
N.B. One has another proof of Proposition 7, by using the following Lemma and the fact that the fixed points of T_{q} can be expressed, or in the form $x=\frac{\xi+\xi^{-1}}{2}$, with ξ a $(q-1)$-th root of unity or in the form $y=\frac{\eta+\eta^{-1}}{2}$, with η a $(q+1)$-th root of unity.

Lemma 8 Let $q=p^{\nu}$ be a power of the prime >2.
The unramified extension $\mathbb{E}_{q^{2}}$ of \mathbb{Q}_{p} of degree 2ν contains \mathbb{E}_{q} and $\left[\mathbb{E}_{q^{2}}: \mathbb{E}_{q}\right]=2$.
The field $\mathbb{E}_{q^{2}}$ is generated over \mathbb{Q}_{p} by the $(q-1)$-th and $(q+1)$-th roots of unity.
Moreover any $(q+1)$-th root of unity η in $\mathbb{E}_{q^{2}}$ is such that $\frac{\eta+\eta^{-1}}{2}$ belongs to \mathbb{E}_{q}.
We omit the proof of Lemma 8.

Lemma 9 Let $L_{q}=\left\{a \in \mathbb{C}_{p} /|a| \leq 1\right.$ and $\left.\left|a^{q}-a\right| \leq|p|^{\frac{1}{p-1}}\right\}$. Then $\Lambda_{q} \subset L_{q}$.
Let m be a positive integer coprime to p.
For any $a \in L_{q}$ the sequence $\left(T_{m q^{k}}(a)\right)_{k \geq 0}$ converges in \mathbb{C}_{p} and if a belongs to Λ_{q}, then $\lim _{k \rightarrow+\infty} T_{m q^{k}}(a) \in \Lambda_{q}$.

Proof

The polynomial congruence $T_{q}(x) \equiv x^{q}\left(\bmod p \mathbb{Z}_{p}[x]\right)$, means that $T_{q}(x)=x^{q}+p r_{q}(x)$, with $r_{q}(x) \in \mathbb{Z}_{p}[x]$. Hence for any $t \in \mathbb{C}_{p}$ such that $|t| \leq 1$, one has $|r(t)| \leq 1$ and $|p|\left|r_{q}(t)\right| \leq|p| \leq|p|^{\frac{1}{p-1}}$. Since $T_{m q^{k+1}}(t)=T_{m q^{k}} \circ T_{q}(t)=T_{m q^{k}}\left(t^{q}+p r_{q}(t)\right)$; applying the p-adic mean value theorem (cf [7] or [8]), one sees that $\left|T_{m q^{k+1}}(t)-T_{m q^{k}}\left(t^{q}\right)\right|=\left|T_{m q^{k}}\left(t^{q}+p r_{q}(t)\right)-T_{m q^{k}}\left(t^{q}\right)\right| \leq\left|p r_{q}(t)\right|\left\|T_{m q^{k}}^{\prime}\right\|$, where $\left\|T_{m q^{k}}^{\prime}\right\|$ is the Gauss norm of the polynomial $T_{m q^{k}}^{\prime}=m q^{k} U_{m q^{k}-1}$, and where $U_{m q^{k}-1}$ is the $\left(m q^{k}-1\right)$ th Chebyshev polynomial of the second kind $U_{m q^{k}-1}$ whose cœefficients are seen to be integer numbers. Then $\left\|T_{m q^{k}}^{\prime}\right\|=\left|m q^{k}\right|\left\|U_{m q^{k}-1}\right\| \leq|q|^{k}$ and $\left|T_{m q^{k+1}}(t)-T_{m q^{k}}\left(t^{q}\right)\right| \leq\left|p r_{q}(t)\right||q|^{k} \leq|p||q|^{k}$.

Let $a \in L_{q}$, then applying again the p-adic mean value theorem, one has $\left.\mid T_{m q^{k}}\left(a^{q}\right)-T_{m q^{k}} a\right) \mid=$ $\left.\mid T_{m q^{k}}\left(a+\left(a^{q}-a\right)\right)-T_{m q^{k}} a\right) \left.\left|\leq\left|a^{q}-a\right|\left\|T_{m q^{k}}^{\prime}\right\| \leq|p|^{\frac{1}{p-1}}\right| m q^{k}\left|=|p|^{\frac{1}{p-1}}\right| q^{k} \right\rvert\,$.

Hence for any $a \in L_{q}$, one obtains: $\left|T_{m q^{k+1}}(a)-T_{m q^{k}}(a)\right|=\left|T_{m q^{k}}\left(a^{q}+p r(a)\right)-T_{m q^{k}}\left(a^{q}\right)+T_{m q^{k}}\left(a^{q}\right)-T_{m q^{k}}(a)\right| \leq$ $\leq \max \left(\left|T_{m q^{k}}\left(a^{q}+\operatorname{pr}(a)\right)-T_{m q^{k}}\left(a^{q}\right)\right|,\left|T_{m q^{k}}\left(a^{q}\right)-T_{m q^{k}}(a)\right|\right) \leq$ $\leq \max \left(|p|,|p|^{\frac{1}{p-1}}\right)|q|^{k}=|p|^{\frac{1}{p-1}}|q|^{k}$.

Il follows that for any element a of L_{q}, one has $\lim _{k \rightarrow+\infty}\left|T_{m q^{k+1}}(a)-T_{m q^{k}}(a)\right|=0$ and the sequence $\left(T_{m q^{k}}(a)\right)_{k \geq 0}$ is a Cauchy sequence and then converges in \mathbb{C}_{p}.

Since the residue field of the ring Λ_{q} is the finite field \mathbb{F}_{q}, any $a \in \Lambda_{q}$ is such that $a^{q} \equiv a\left(\bmod p \Lambda_{q}\right)$, then $\left|a^{q}-a\right|<|p| \leq|p|^{\frac{1}{p-1}}$, that is a belongs to L_{q}. Since the cofficients of the polynomials are integer numberss, for any $a \in \Lambda_{q}$, one has $T_{m q^{k}}(a) \in \Lambda_{q}$ and $\lim _{k \rightarrow+\infty} T_{m q^{k}}(a) \in \Lambda_{q}$.

Let us set $\varphi_{m}(a)=\lim _{k \rightarrow+\infty} T_{m q^{k}}(a)$, for $a \in L_{q}$ and m a positive integer coprime to p.
One has $\varphi_{m}(a)=\lim _{k \rightarrow+\infty} T_{m} \circ T_{q^{k}}(a)=T_{m}\left(\lim _{k \rightarrow+\infty} T_{q^{k}}(a)\right)=T_{m}\left(\varphi_{1}(a)\right)$. On the other hand $\varphi_{1}(a)=\lim _{k \rightarrow+\infty} T_{q} \circ T_{q^{k-1}}(a)=T_{q}\left(\lim _{k \rightarrow+\infty} T_{q^{k-1}}(a)\right)=T_{q}\left(\varphi_{1}(a)\right)$.
Then $\varphi_{1}(a)$ is a fixed point of T_{q}.
The closed discs in $\mathbb{C}_{p}\left(\right.$ resp. $\left.\mathbb{E}_{q}\right)$ will be denoted by $D^{+}(a, r)$ (resp. $\left.D_{q}^{+}(a, r)\right)$ and the open discs by $D^{-}(a, r)\left(\operatorname{resp} . D_{q}^{-}(a, r)\right)$.
Let us put $|p|^{\frac{1}{p-1}}=\rho_{p}$.

Remark 10 Let $\xi_{0}=0$ and $\xi_{1}, \xi_{1}, \cdots, \xi_{q-1}$ be the $(q-1)$-th roots of unity.
Then $D^{+}\left(\xi_{\ell}, \rho_{p}\right) \subset L_{q}$. In fact $L_{q}=\bigsqcup_{0 \leq \ell \leq q-1} D^{+}\left(\xi_{\ell}, \rho_{p}\right)$.

Proof

Indeed, if $a \in D^{+}\left(\xi_{\ell}, \rho_{p}\right)$, since $\xi_{\ell}^{q}=\xi_{\ell}$, for $1 \leq \ell \leq q-1$, one has $a^{q}-a=a^{q}-\xi_{\ell}^{q}+$ $\xi_{\ell}^{q}-a=a^{q}-\xi_{\ell}^{q}+\xi_{\ell}-a$, with $\left|a^{q}-\xi_{\ell}^{q}\right|=\left|a-\xi_{k}\right|\left|\sum_{j=0}^{\ell-1} a^{q-1-j} \xi_{k}^{j}\right| \leq\left|a-\xi_{\ell}\right|$. It follows that $\left|a^{q}-a\right| \leq \max \left(\left|a^{q}-\xi_{\ell}^{q}\right|,\left|\xi_{\ell}-a\right|\right)=\left|a-\xi_{k}\right| \leq \rho_{p}$ and $D^{+}\left(\xi_{\ell}, \rho_{p}\right) \subset L_{q}$. For $\ell=0$, one has $|a|=|a-0| \leq \rho_{p}$ and obviously $\left|a^{q}-a\right|=|a| \leq \rho_{p}$.
Let $a \in L_{q}$, since $\left|a^{q}-a\right| \leq \rho_{p}<1$, one sees on one hand that $\left|a^{q^{k}}-a^{q^{k-1}}\right| \leq \rho_{p}$ and on the other hand, since $a^{q}=a+c$, with $|c|<1$, one verifies that $\left(a^{q^{k}}\right)_{k \geq 0}$ is a Cauchy sequence. Hence, setting $\omega(a)=\lim _{k \rightarrow+\infty} a^{q^{k}}$, one has $\omega(a)^{q}=\omega(a)$ and $|\omega(a)-a| \leq \rho_{p}$. If $\omega(a)=0$, then a belongs to $D^{+}\left(0, \rho_{p}\right)$. Otherwise, one has $\omega(a) \neq 0$ and $\omega(a)$ is a $(q-1)$-th root of unity and equal to one of the ξ_{ℓ}, then $\left|a-\xi_{\ell}\right| \leq \rho_{p}$, that is a belongs to $D^{+}\left(\xi_{\ell}, \rho_{p}\right)$.
It is readily seen that two distinct discs $D^{+}\left(\xi_{\ell}, \rho_{p}\right)$ has an empty intersection.

N.B.

$-\&-\quad$ Let us set $L_{q}^{-}=\left\{a \in \mathbb{C}_{p} /\left|a^{q}-a\right|<1\right\}$. Then as above $L_{q}^{-}=\bigsqcup_{0 \leq \ell \leq q-1} D^{-}\left(\xi_{\ell}, 1\right)$.
The proof is as that of Remark 10
$-\& \&-\quad$ The sets L_{q} and L_{q}^{-}are described in [9] for the case where $q=p$ and called lemniscate. In fact they are special case of the lemniscates that can be attached to any monic polynomial with cœefficients in an ultrametric valued field as defined in [1] -Proposition 4.8.1.

Proposition 11 Let $w_{0}=0, w_{1}, \cdots, w_{q-1}$ be the fixed points of T_{q}, i.e. the ν-periodic points of T_{p}.
Then, for $0 \leq \ell \leq q-1$ and for $a \in D^{+}\left(\xi_{\ell}, \rho_{p}\right)$, one has $\varphi_{1}(a)=w_{\ell}$.

Proof

Let $a \in D^{+}\left(\xi_{\ell}, \rho_{p}\right)$, we have seen above that $\left|a^{q}-a\right| \leq \rho_{p}$ and that $\left(a^{q^{k}}\right)_{k \geq 0}$ is a Cauchy sequence.
On the other hand, the polynomials $T_{q^{k}}$ are such that $T_{q^{k}}(x)=x^{q^{k}}+p r_{q^{k}}(x)$, the coefficients of the polynomial $r_{q^{k}}(x)$ being integer numbers. Hence for $a \in D^{+}\left(\xi_{\ell}, \rho_{p}\right)$, one has $\left|T_{q^{k}}(a)-a^{q^{k}}\right| \leq|p|<\rho_{p}$ and $\left|\lim _{k \rightarrow+\infty} T_{q^{k}}(a)-\lim _{k \rightarrow+\infty} a^{q^{k}}\right|=\left|\varphi_{1}(a)-\omega(a)\right|=\left|\varphi_{1}(a)-\xi_{\ell}\right| \leq \rho_{p}$. As w_{ℓ} is the only fixed point of T_{q} with this property, one has $\varphi_{1}(a)=w_{\ell}$.

Remark 12 Let T_{n} be the n-th Chebyshev polynomial of the first kind, $n \geq 1$
If $p>2$ and $a \in \mathbb{C}_{p}$ is such that $|a|>1$, then $\lim _{k \rightarrow+\infty}\left|T_{n^{k}}(a)\right|=+\infty$.

Proof Indeed since $T_{n^{k}}(x)=2^{n^{k}-1} x^{n^{k}}+\sum_{j=0}^{n^{k}-1} a_{n^{k}, j} x^{j}$, with $a_{n^{k}, j} \in \mathbb{Z}$, for $|a|>1$, one has $\left|a_{n^{k}, j}\right| \cdot \frac{\left|a^{j}\right|}{\left|2^{n^{k}-1}\right| a^{n^{k}} \mid} \leq \frac{\left|a^{j}\right|}{\left|a^{n^{k}}\right|}<1$, for $0 \leq j \leq n^{k}-1$.

Hence $\left|T_{n^{k}}(a)\right|=\left|2^{n^{k}-1}\right|\left|a^{n^{k}}\right| \cdot\left|1+\sum_{j=0}^{n^{k}-1} a_{n^{k}, j} \frac{a^{j}}{2^{n^{k}-1} a^{n^{k}}}\right|=|a|^{n^{k}} \longrightarrow+\infty$, when $k \longrightarrow+\infty$.
Let us remind that by definition the basin of attraction of an attractive fixed point x_{0} for a dynamical system associated to a function f on a topological set X is the subset $\operatorname{Att}\left(x_{0}, f\right)=\{y \in$ $\left.X / \lim _{k \rightarrow+\infty} f^{\circ k}(y)=x_{0}\right\}$.

Since $T_{q}^{\prime}=q U_{q-1}$, for the fixed points w_{ℓ} of T_{q}, one has $\left|T_{q}^{\prime}\left(w_{\ell}\right)\right|=|q|\left|U_{q-1}\left(w_{\ell}\right)\right| \leq|q|<1$ and w_{ℓ} is an attractive fixed point of T_{q}.

Theorem 13 With the same notations as above, one has $\operatorname{Att}\left(w_{\ell}, T_{q}\right)=D^{-}\left(\xi_{\ell}, 1\right)$.

Proof

$-\bullet$ Let $a \in D^{-}\left(\xi_{\ell}, 1\right)$, that is $\left|a-\xi_{\ell}\right|<1$. Since $\xi_{\ell}^{q}=\xi$, one has $a^{q}-\xi_{\ell}=a^{q}-\xi_{\ell}^{q}=$ $(a-\xi) \sum_{j=0}^{q-1} a^{q-1-j} \xi_{\ell} \Longrightarrow\left|a^{q}-\xi_{\ell} \leq\left|a-\xi_{\ell}\right|<1\right.$ and $| a^{q}-a \mid<1$. Since $a^{q}=\xi_{\ell}+c$, with $|c|<1$, one sees that $a^{q^{k}}=\xi_{\ell}+c_{k}$, with $\lim _{k \rightarrow+\infty} c_{k}=0$, hence $\lim _{k \rightarrow+\infty} a^{q^{k}}=\xi_{\ell}$. and he sequence $\left(a^{q^{k}}\right)_{k \geq 0}$ is a Cauchy sequence. Therefore there exists k_{0} such that $\forall k \geq k_{0}$, one has $\left|a^{q^{k+1}}-a^{q^{k}}\right|<\rho_{p}$.
It follows that $a^{q^{k_{0}}}$ belongs to L_{q} and also $a^{q^{k_{0}}} \in D^{+}\left(\xi_{\ell}, \rho_{p}\right)$.
According to Proposition 11, one has $\lim _{k \rightarrow+\infty} T_{q^{\ell}}\left(a^{q^{k_{0}}}\right)=w_{\ell}$.
However, $T_{q^{k_{0}+k}}(a)=T_{q^{k}}\left(T_{q^{k_{0}}}(a)\right)$ and $T_{q_{0}^{k}}(a)=a^{q^{k_{0}}}+p r_{k_{0}}\left(a^{q_{0}^{k}}\right)$, with $r_{k_{0}} \in \mathbb{Z}_{p}[x)$.
Applying again the p-adic mean value theorem, one has $\left|T_{q^{k_{0}+k}}(a)-T_{q^{k}}\left(a^{q^{k_{0}}}\right)\right|=$ $=\left|T_{q^{k}}\left(a^{q^{k_{0}}}+p r_{k_{0}}\left(a^{q_{0}^{k}}\right)\right)-T_{q^{k}}\left(a^{q^{k_{0}}}\right)\right| \leq\left\|T_{q^{k}}^{\prime}\right\||p| \leq|p||q|^{k}$.
It follows that $\lim _{k \rightarrow+\infty} T_{q^{k}}(a)=\lim _{k \rightarrow+\infty} T_{q^{k_{0}+k}}(a)=\lim _{k \rightarrow+\infty} T_{q^{k}}\left(T_{q^{k}}(a)\right)=w_{\ell}$ and $a \in \operatorname{Att}\left(w_{\ell}, T_{q}\right)$. Therefore $D^{-}\left(\xi_{\ell}, 1\right) \subseteq \operatorname{Att}\left(w_{\ell}, T_{q}\right)$.
$-\bullet$ Let $a \in \operatorname{Att}\left(w_{\ell}, T_{q}\right)$. By definition $\lim _{k \rightarrow \infty} T_{q}^{\circ k}(a)=w_{\ell}$. Reminding that $T_{q}^{\circ k}=T_{q^{k}}$, according to Remark 12, one must have $|a| \leq 1$.

There exists k_{0} such that $\left|T_{q^{k}}(a)-w_{\ell}\right| \leq \rho_{p}, \forall k \geq k_{0}$. As above $\left|T_{q^{k}}(a)-a^{q^{k}}\right| \leq|p|$. Since $\left|w_{\ell}-\xi_{\ell}\right| \leq|p|$, one obtains $\left|\xi_{\ell}-a^{q^{k}}\right|=\left|w_{\ell}-T_{q^{k}}(a)+T_{q^{k}}(a)-w_{\ell}+w_{\ell}-\xi_{\ell}\right| \leq$ $\leq \max \left(\left|w_{\ell}-T_{q^{k}}(a)\right|,\left|T_{q^{k}}(a)-w_{\ell}\right|,\left|w_{\ell}-\xi_{\ell}\right|\right) \leq \rho_{p}<1$. However $\xi_{\ell}^{q}=\xi_{\ell} \Longrightarrow \xi_{\ell}^{q^{k}}=\xi_{\ell}$. Hence in the residue field $\widetilde{\mathbb{F}}_{p}$ of \mathbb{C}_{p}, one has $0=\bar{a}^{q^{k}}-\bar{\xi}^{q^{k}}=\left(\bar{a}-\bar{\xi}_{\ell}\right)^{q^{k}} \Longrightarrow \bar{a}=\bar{\xi}_{\ell}$, that is $\left|a-\xi_{\ell}\right|<1 \Longrightarrow$ $\operatorname{Att}\left(w_{\ell}, T_{q}\right) \subseteq D^{-}\left(\xi_{\ell}, 1\right)$.

In conclusion $\operatorname{Att}\left(w_{\ell}, T_{q}\right)=D^{-}\left(\xi_{\ell}, 1\right)$.

Corollary 14 Let $\operatorname{Att}_{q}\left(w_{\ell}, T_{q}\right)$ be the set of attracting points off w_{ℓ} contained in the unramified field \mathbb{E}_{q}.
Then $\operatorname{Att}_{q}\left(w_{\ell}, T_{q}\right)=D_{q}^{+}\left(\xi_{\ell},|p|\right)$.

Proof It suffices to notice that the unramified field \mathbb{E}_{q} is of discrete valuation and that if $a \in \mathbb{E}_{q}$ is such that $|a|<1$, then $|a| \leq|p|$.

Remark

Let p be a prime number $\neq 2$. What we have done above is the determination of all the periodic points of the p-th Chebyshev polynomial of the first kind T_{p}. Since $T_{p}^{\circ \nu}=T_{p^{\nu}}$ the p^{ν}-th Chebyshev polynomial of the first kind, for any periodic w, taken ν such that $T_{p}^{\circ \nu}(w)=w$, one has that w is a fixed point $T_{p^{\nu}}$ and if not equal 0 , is congruent modulo the maximal ideal of the valuation ring of \mathbb{C}_{p} to a $p^{\nu}-1$-th root of unity.

Summarizing, one sees that the periodic points of T_{p} are in a bijective correspondence with the residue field $\widetilde{\mathbb{F}}_{p}$ of \mathbb{C}_{p}.

4 The p-adic dynamic of $T_{n},(n, p)=1, p \geq 3$

Let us remind that if p is a prime number, then for any integer $m \geq 1$ and x_{0} a fixed point of T_{m}, one has $\left|T_{m}\left(x_{0}\right)\right|=|m|$ if $x_{0} \neq 1$ and $\left|T_{m}(1)\right|=|m|^{2}$, when $x_{0}=1$. If follows that if p does not divide m, then $\left|T_{m}\left(x_{0}\right)\right|=1$ for any fixed point x_{0} of T_{m}. In other words any fixed point of T_{m} in the complex p-adic field \mathbb{C}_{p} is an indifferent point.

Let $f: D \longrightarrow D$ be an analytic map, where D is a disc of \mathbb{C}_{p} of finite or infinite radius and let w be a ν-periodic point of f, if there exists an open disc $D^{-}(w, r)$ such that for any real number $0<r^{\prime}<r$ the sphere $S\left(w, r^{\prime}\right)=\left\{x \in \mathbb{C}_{p} /|x-w|=r^{\prime}\right\}$ is invariant by f^{ν}, one says that $D^{-}(w, r)$ is a Siegel disc and w a center of a Siegel disc. The union of Siegel discs with center w is called the Siegel disc and then of maximal radius at w. This is the ultrametric counterpart of the Siegel disc defined in complex analysis. (see for the complex case [2] and [4] or [5] for the ultrametric case).

Assume $p \geq 3$. Let n be a positive integer ≥ 2, such that n and p are coprime. Hence for any other integer $\nu \geq 1$ one has $\left(n^{\nu}, p\right)=1$. Since $T_{n}^{\circ \nu}=T_{n^{\nu}}$, the ν-periodic points are the fixed points w of $T_{n^{\nu}}$ that we know be of the form $w=\frac{\xi+\xi^{-1}}{2}$, where ξ is a $\left(n^{\nu}-1\right)-$ th root of unity or of the form $w=\frac{\eta+\eta^{-1}}{2}$, where η is a $\left(n^{\nu}+1\right)-$ th root of unity.

Hence if w is a ν-periodic point of T_{n} in \mathbb{C}_{p}, one has $|w| \leq 1$. Moreover, if $\xi^{2}+1 \not \equiv 0\left(\bmod \mathcal{M}_{p}\right)$, (resp. $\eta^{2}+1 \not \equiv 0\left(\bmod \mathcal{M}_{p}\right)$, where \mathcal{M}_{p} is the maximal ideal of the valuation ring \mathbb{A}_{p} of \mathbb{C}_{p}, then $|w|=1$. Otherwise $|w|<1$ and reducing modulo \mathcal{M}_{p}, one has in the residue field $\mathbb{A}_{p} / \mathcal{M}_{p}=\widetilde{\mathbb{F}}_{p}$ that $\bar{\zeta}^{2}+1=0$ (resp. $\bar{\eta}^{2}+1=0$). Applying Hensel lemma, one sees that the root of unity is a square root of -1 in \mathbb{C}_{p} and then $w=0$.

Let $T_{n^{\nu}}(x)=T_{n^{\nu}}(w)+\sum_{j=1}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!}(x-w)^{j}$ be the Taylor expansion near w, where $T_{n^{\nu}}^{(j)}$ is the j-th derivative of $T_{n^{\nu}}$.
However, $T_{n^{\nu}}(x)=\sum_{k=0}^{\left[\frac{n^{\nu}}{2}\right]}(-1)^{k} 2^{n^{\nu}-2 k-1} \frac{n^{\nu}}{n^{\nu}-k}\binom{n^{\nu}-k}{k} x^{n^{\nu}-2 k}$.
It is then readily seen that for $0 \leq j \leq n$, one has

$$
\begin{aligned}
& \frac{T_{n^{\nu}}^{(j)}(x)}{j!}=\sum_{k=0}^{\left[\frac{n^{\nu}}{2}\right]}(-1)^{k} 2^{n^{\nu}-2 k-1}\binom{n^{\nu}-2 k}{j} \frac{n^{\nu}}{n^{\nu}-k}\binom{n^{\nu}-k}{k} x^{n^{\nu}-2 k-j}= \\
& =\sum_{k=0}^{\left[\frac{n^{\nu}-j}{2}\right]}(-1)^{k} 2^{n^{\nu}-2 k-1} \frac{n^{\nu}}{n^{\nu}-k}\binom{n^{\nu}-2 k}{j}\binom{n^{\nu}-k}{k} x^{n^{\nu}-2 k-j} .
\end{aligned}
$$

The coefficients of the polynomials $\frac{T_{n^{\nu}}^{(j)}(x)}{j!}$ are integer numbers.
Hence, since $|w| \leq 1$,one sees that

$$
\begin{aligned}
& \left|\frac{T_{\nu^{\nu}}^{(j)}(w)}{j!}\right|=\left|\sum_{k=0}^{\left[\frac{n^{\nu}-j}{2}\right]}(-1)^{k} 2^{n^{\nu}-2 k-1} \frac{n^{\nu}}{n^{\nu}-k}\binom{n^{\nu}-2 k}{j}\binom{n^{\nu}-k}{k} w^{n^{\nu}-2 k-j}\right| \leq \\
& \leq \max _{0 \leq k \leq\left[\frac{n^{\nu}-j}{2}\right]}|w|^{n^{\nu}-2 k-j} \leq 1 .
\end{aligned}
$$

Proposition 15 Let p be a prime number different from 2 and n be an integer ≥ 2 such that p does not divide n.
Then any periodic point w of T_{n} is an indifferent point, with absolute value ≤ 1 and the Siegel disc around w is the disc $D^{-}(w, 1)$.

Proof

Let w be a periodic point of T_{n} of periodic ν. Then $T_{n^{\nu}}(w)=w$ and $T_{n^{\nu}}(x)-w=$

$$
\begin{aligned}
& =T_{n^{\nu}}(x)-T_{n^{\nu}}(w)=\sum_{j=1}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!}(x-w)^{j}=(x-w) \sum_{j=1}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!}(x-w)^{j-1}= \\
& =(x-w)\left(T_{n^{\nu}}(w)+\sum_{j=2}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j}(w)}{j!}(x-w)^{j-1}\right) .
\end{aligned}
$$

But $\left|\sum_{j=2}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!}(x-w)^{j-1}\right| \leq \max _{2 \leq j \leq n^{\nu}}\left|\frac{T_{n^{\nu}}^{(j)}(w)}{j!}\right||x-w|^{j-1} \leq \max _{2 \leq j \leq n^{\nu}}|x-w|^{j-1}$.
Then if $|x-w|<1$, one has $\left|\sum_{j=2}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!}(x-w)^{j-1}\right| \leq \max _{2 \leq j \leq n^{\nu}}|x-w|^{j-1}<1$.
Since $\left|T_{n^{\nu}}^{\prime}(w)\right|=1$, for $|x-w|<1$, one obtains $\left|T_{n^{\nu}}(x)-w\right|=|x-w|$.
Let $0<r^{\prime}<r<1$ be two real numbers, elements of $\left|\mathbb{C}_{p}\right| \backslash\{0\}$.
If $|x-w|=r^{\prime}$, then $\left|T_{n^{\nu}}(x)-w\right|=|x-w|=r^{\prime}$, it follows that the sphere $S\left(w, r^{\prime}\right)$ is invariant by $T_{n^{\nu}}$.

This shows that $D^{-}(w, 1)$ is the Siegel disc around w.
N.B. If the integer numbers n and ν are such that $n^{\nu}-1=p^{\mu}$ a power of p, then if ζ is a primitive $n^{\nu}-1$-th root of unity the field $\mathbb{Q}_{p}[\zeta]$ is a totally ramified extension of \mathbb{Q}_{p}. It follows that this field has the same residue field \mathbb{F}_{p} as \mathbb{Q}_{p}. If $n^{\nu}-1=p^{k}, k \geq 2$ there are distinct ν-periodic points of T_{n} in $\left\{\frac{\xi+\xi^{-1}}{2} \neq 0, \xi^{n^{\nu}-1}=1\right\}$ whose residue classes are equal in \mathbb{F}_{p}.

Scholie

$-\dagger-\quad$ Above we have supposed that the prime number p is different from 2 without giving any explanation. But let us consider the expansion of the Chebyshev polynomials:

$$
\begin{aligned}
& T_{2 m}(x)=\sum_{k=0}^{m}(-1)^{k} 2^{2(m-k)-1} \frac{2 m}{2 m-k}\binom{2 m-k}{k} x^{2(m-k)}= \\
= & 2^{2 m-1} x^{2 m}+\sum_{k=1}^{m-1}(-1)^{k} \sum_{k=0}^{m}(-1)^{k} 2^{2(m-k)-1} \frac{2 m}{2 m-k}\binom{2 m-k}{k} x^{2(m-k)}+(-1)^{m} .
\end{aligned}
$$

It follows that in the polynomial ring $\mathbb{Z}[x]$, one has the congruence

$$
T_{2 m}(x) \equiv 1(\bmod 2 \mathbb{Z}[x])
$$

Also $T_{2 m+1}=2^{2 m} x^{2 m+1}+\sum_{k=1}^{m-1}(-1)^{k} \sum_{k=0}^{m}(-1)^{k} 2^{2(m-k)} \frac{2 m+1}{2 m-k+1}\binom{2 m-k+1}{k} x^{2(m-k)+1}+$ $(-1)^{m}(2 m+1) x$. Therefore

$$
T_{2 m+1}(x) \equiv x(\bmod 2 \mathbb{Z}[x])
$$

Hence the method used to locate periodic points of the polynomial T_{p} cannot be applied when $p=2$.

Nevertheless if w in a fixed point of the Chebyshev polynomial T_{n}, one has in the field of 2adic complex numbers \mathbb{C}_{2} that $\left|T_{n}^{\prime}(w)\right|_{2}=|n|_{2}$ if $w \neq 1$ and $\left|T_{n}^{\prime}(1)\right|_{2}=\left|n^{2}\right|_{2}$. Then if n is even $\left|T_{n}^{\prime}(w)\right|<1$ and any fixed point w of T_{n} is an attractive point in \mathbb{C}_{2}. On the other hand, if n is odd, one has $\left|T_{n}^{\prime}(w)\right|=1$ and the fixed point w of T_{n} is indifferent. By the same way, any periodic point of T_{n} is an attractive point if n is even and an indifferent point if n is odd.

The fixed points of the second Chebyshev polynomial $T_{2}(x)=2 x^{2}-1$ are 1 and $-\frac{1}{2}$. Hence in contrast with the cas $p \neq 2$, one has $\left|-\frac{1}{2}\right|_{2}=2>1$.
However for any positive integer $\nu \geq 1$, the ν-periodic points in \mathbb{C}_{2} lie in the ν-dimensional unramified extension $\mathbb{E}_{2^{\nu}}$ of \mathbb{Q}_{2}. Indeed one can apply Lemma 8 and the Nota Bene before it to prove that, since $T_{2}^{\circ \nu}=T_{2^{\nu}}$, the ν-periodic points are of the form $w=\frac{\xi+\xi^{-1}}{2}$ where ξ is a $\left(2^{\nu}-1\right)$-th root of unity or $w=\frac{\eta+\eta^{-1}}{2}$ where η is a $\left(2^{\nu}+1\right)$-th root of unity.

For $\nu=2$, since $2^{2}-1=3$ the 3 -th roots of unity (cubic roots of unity) in \mathbb{C}_{2} are 1 and the roots of the polynomial $x^{2}+x+1$ that we write in the forms $j=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$ and $j^{2}=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$. The corresponding unramified field extension of dimension 2 over \mathbb{Q}_{2} is $\mathbb{E}_{4}=\mathbb{Q}_{2}[j]=\mathbb{Q}_{2}[\sqrt{-3}]$

For $2^{2}+1=5$ the 5 -th roots of unity are 1 and the roots of the polynomial $x^{4}+x^{3}+x^{2}+x+1$. A classical procedure of the resolution of this quartic equation by setting $u=x+\frac{1}{x}$ yields to the auxillary equation $u^{2}+u-1=0$ which has two solutions $u_{ \pm}=-\frac{1}{2} \pm \frac{\sqrt{5}}{2}$. Notice that since $5 \equiv-3(\bmod 8)$, one has $\sqrt{5}=\delta \sqrt{-3} \in \mathbb{E}_{4}$, with δ the square root of $1-3^{-1} 8$ which belongs to \mathbb{Q}_{2} and $\mathbb{E}_{4}=\mathbb{Q}_{2}[\sqrt{5}]$. Moreover $x^{2}-u_{ \pm} x+1=0 \Longrightarrow 2 x^{2}+(1+\sqrt{5}) x+2=0$, or $2 x^{2}+(1-\sqrt{5}) x+2=0$.

Then $\left(x+\frac{1+\sqrt{5}}{4}\right)^{2}=\frac{2 \sqrt{5}-10}{16}$ or $\left(x+\frac{1-\sqrt{5}}{4}\right)^{2}=\frac{2 \sqrt{5}-10}{16}$, with $\frac{2 \sqrt{5}-10}{16} \in \mathbb{E}_{4}$. Let us denote by $\theta \in \mathbb{C}_{2}$ a root of the polynomial $X^{2}-(2 \sqrt{5}-10) \in \mathbb{E}_{4}[X]$, one obtains the 5 -th roots of unity in the form $\eta_{1}=-\frac{1+\sqrt{5}}{4}+\frac{\theta}{4}, \eta_{2}=-\frac{1+\sqrt{5}}{4}-\frac{\theta}{4}$, with $\eta_{1}^{-1}=\eta_{2}$ and $\eta_{3}=\frac{\sqrt{5}-1}{4}+\frac{\theta}{4}, \eta_{4}=\frac{\sqrt{5}-1}{4}-\frac{\theta}{4}$, with $\eta_{3}^{-1}=\eta_{4}$. From these 5 -th roots of unity in \mathbb{C}_{2}, one obtains the 2-periodic points $w_{3}=-\frac{1+\sqrt{5}}{4}$ and $w_{4}=\frac{\sqrt{5}-1}{4}$ that belongs to \mathbb{E}_{4}. The other 2-periodic points of T_{2} are the fixed points 1 and $-\frac{1}{2}$. The 2-periodic points w_{3} and w_{4} are conjugated in the quadratic extension \mathbb{E}_{4} of \mathbb{Q}_{2}, with norm $w_{3} w_{4}=-\frac{1}{4}$ wich implies that $\left|w_{3}\right|=\left|w_{4}\right|=\left|-\frac{1}{4}\right|_{2}^{\frac{1}{2}}=2$. The period of w_{3} and w_{4} is 2 .

More generally, one can prove that for any integer $\nu \geq 1$, if w is a ν-periodic point in \mathbb{C}_{2} different from 1, then $|w|_{2}=2$.
$-\dagger \dagger-$ One immediately verifies that if the prime p is different from 2 , then since the leading cœefficient of the Chebyshev polynomial $T_{n}, n \geq 2$, is equal to 2^{n-1}, then the leading cœeficient of the reduced polynomial modulo p is the class of 2^{n-1} that is different from 0 . Hence the polynomial $T_{n}, n \geq 2$, has good reduction modulo p and one deduces from a well known theorem of Morton and Silverman ([6]) that the p-adic Julia set of T_{n} is the empty set.
The congruences modulo 2 for the Chebyshev polynomials $T_{n}, n \geq 2$ quoted above show that these polynomials have bad reduction modulo 2 . However, one can prove directly that the p-adic Julia set of any polynomial Chebyshev T_{n} of degree $n \geq 2$, is the empty set, regardless the prime number p is 2 or odd.

References

[1] Y. Amice, Les nombres p-adiques, PUF, Paris 1975.
[2] A. F. Beardon, Iteration of rational functions, Springer, GTM 132, New York, Berlin, Heidelberg, 2000.
[3] F. Q. Gouvea, p-adic Numbers, An introduction, Universitext, Springer, Berlin 1997
[4] A. Yu. Khrennikov, Non-archimedan ananlysis : quantum paradoxes, dyamical systems and biological models, Kluwer Academic Publishers, Dordrecht, 1997.
[5] A. Yu. Khrennikov and M. Nilson, p-Adic deterministic and random dynamics, Kluwer Academic Publishers, Dordrecht, 2004.
[6] P. Morton and J. Silverman, Periodic points, multiplicities and dynamical units, J. Reine Angew. Math. 461 (1995), no.2,183-208.
[7] A. M. Robert, Le théorème des accroissements finis p-adique, Annales Mathématiques Blaise Pascal, vol. 2, N ${ }^{\circ} 1,1995$.
[8] A. M. Robert, A course in p-adic analysis, Springer-Verlag, New York-Heidelberg-Berlin, 2000.
[9] M. Zuber, Propriétés p-adiques des polynômes classiques, Thèse, Université de Neuchatel, (Suisse), 03 décembre 1992.

Laboratoire de Mathématiques, UMR 6620
CNRS - Université Blaise Pascal
Complexe Scientifique des Cézeaux
63177 Aubière Cedex - France
e-mail : Bertin.Diarra@math.univ-bpclermont.fr

