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Abstract

We study the behaviour of the iterates of the Chebyshev polynomials of the first kind in
p-adic fields. In particular, we determine in the field of complex p-adic numbers for p > 2,
the periodic points of the p-th Chebyshev polynomial of the first kind. These periodic points
are attractive points. We describe their basin of attraction. The classification of finite fields
extensions of the field of p-adic numbers Qp, enables one to locate precisely, for any integer
ν ≥ 1, the ν-periodic points of Tp: they are simple and the nonzero ones lie in the unit circle
of the unramified extension of Qp, (p > 2) of degree ν. This generalizes a result, stated by M.
Zuber in his PhD thesis, giving the fixed points of Tp in the field Qp, (p > 2).

1 Classical formulas for Chebyshev polynomials

Let i =
√
−1 and Q[i] the quadratic field over the tfield of the rational numbers. Let Q[i][[θ]]

(resp.Q[i]((θ)) be the algebra (resp. the field) of formal power series (resp. formal Laurent series)
with indeterminate θ and cœfficients in Q[i].

Let us consider the following formal trigonometric series, elements of Q[i][[θ]] :

exp(iθ) =
∑
k≥0

ik

k!
θk

cos(θ) =
exp(iθ) + exp(−iθ)

2
=
∑
k≥0

(−1)k

(2k)!
θ2k

sin(θ) =
exp(iθ)− exp(−iθ)

2i
=
∑
k≥1

(−1)k−1

(2k + 1)!
θ2k+1

One has exp(iθ) = cos(θ) + i sin(θ). In the algebra of formal power series in two variables
Q[i][[θ, θ′]], from the fact that exp(i(θ + θ′)) = exp(iθ) + exp(iθ′) one deduces the usual addition
and substraction formulas for the formal trigonometric series, cos(θ)2 + sin(θ)2 = 1, etc...

There exists a sequence of polynomials (Tn)n≥0 such that Tn(cosθ) = cos(nθ). The polynomial
Tn is called the n-th Chebyshev polynomial of the first kind.
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Ifm and n are positive integers one has Tm(Tn(cos(θ))) = Tm(cos(nθ)) = cos(mnθ) = Tmn(cos(θ)).
On the other hand since cos((n + 1)θ) = cos(nθ) cos(θ) − sin(nθ) sin(θ) and cos((n − 1)θ) =
cos(nθ) cos(θ) + sin(nθ) sin(θ), one sees that Tn+1(cos(θ)) + Tn−1(cos(θ)) = T1(cos(θ))Tn(cos(θ)).
As a consequence, one has

Lemma 1 The sequence of Chebyshev polynomials of the first kind satisfies the following properties:
−(1)− T0 = 1, T1(x) = x
−(2)− Tn+1(x) = 2xTn(x)− Tn−1(x), ∀n ≥ 1
−(3)− Tm ◦ Tn = Tmn = Tn ◦ Tm

A consequence of the property (3) is that the sequence (Tn)n≥0 is a commutative monoid with
respect to the operation of composition, the identity element being T1 = x and T ◦kn = Tnk , ∀n, k.

Corollary 2 The polynomial Tn is of degree n, whose cœfficients are integers with its leading
cœfficent equal to 2n−1

Differentiating the relation Tn(cosθ) = cos(nθ), one obtains
d

dθ
Tn(cos(θ)) = − sin(θ)T ′n(cos(θ)) =

−n sin(nθ). Then T ′n(cosθ)) = n
sin(nθ)

sin(θ)
.

The sequence of Chebyshev polynomials of the second kind is the sequence of polynomials Un such

that Un(cos(θ)) =
sin((n+ 1)θ)

sin(θ)
. Since sin((n + 1)θ) + sin((n − 1)θ) = 2 cos(θ) sin(nθ), one sees

that Un(cos(θ)) + Un−2(cos(θ)) = 2 cos(θ)Un−1(cos(θ)).

Lemma 3 The sequence of Chebyshev polynomials of the second kind satisfies the following prop-
erties:
−(1)− U0 = 1, U1(x) = 2x.
−(2)− Un+1(x) = 2xUn(x)− Un−1(x), ∀n ≥ 1. The degree of Un is equal to n.
−(3)− T ′n(x) = nUn−1(x).

Let us do the change of variable by putting exp(iθ) = y. Then formally, the TChebyshev

polynomials of first and second kinds are also given by substitution of the fraction
y + y−1

2
:

Tn

(
y + y−1

2

)
=
yn + y−n

2

Un

(
y + y−1

2

)
=
yn+1 − y−n−1

y − y−1

One consequence is that for any integer n ≥ 0, one has:

Tn(−x) = (−1)nTn(x) and Un(−x) = (−1)nUn(x).
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Let us do another change of variable
y + y−1

2
= x, that is y2 + 1 = 2xy ⇐⇒ (y − x)2 =

−(1 − x2) = i2(1 − x2). The square roots of (1 − x2) exist in the ring of formal power series

Q[i][[x]], with one taken to be
√

1− x2 =
∑
`≥0

(−1)`
( 1

2

`

)
x2`. Therefore y = x ± i

√
1− x2. Putting

y = x+ i
√

1− x2, one has y−1 = x− i
√

1− x2 and

Tn(x) =
1

2

(
x+ i

√
1− x2

)n
+

1

2

(
x− i

√
1− x2

)n
Since

(
x+ i

√
1− x2

)n
=

n∑
m=0

(
n

m

)
imxn−m(1−x2)

m
2 =

∑
2m≤n

n∑
m=0

(
n

2m

)
(−1)mxn−2m(1−x2)m+

i
∑

2m+1≤n

(
n

m

)
(−1)mxn−2m−1(1− x2)

2m+1
2 and

(
x− i

√
1− x2

)n
=
∑

2m≤n

(
n

2m

)
(−1)mxn−2m(1− x2)m

− i
∑

2m+1≤n

(
n

2m+ 1

)
(−1)mxn−2m−1(1− x2)

2m+1
2 , one obtains

Tn(x) =
∑

2m≤n

(
n

2m

)
(−1)mxn−2m(1− x2)m.

On the other hand (1− x2)m =
∑

k+`=m

(
m

k

)
(−1)`x2`.

Then Tn(x) =
∑

2k+2`≤n

(
n

2k + 2`

)
(−1)k+2`

(
k + `

k

)
xn−2k−2`x2` =

=
∑
2k≤n

(−1)k
∑
2`≤n

(
n

2k + 2`

)(
k + `

k

)
xn−2k. That is

Tn(x) =

[n2 ]∑
k=0

(−1)k
[n2 ]∑
`=0

(
n

2k + 2`

)(
k + `

k

)
xn−2k.

By differentiating the relation sin(θ)T ′n(cos(θ)) = n sin(nθ), one obtains
cos(θ)T ′n(cos(θ))− sin(θ)2T ′′n (cos(θ)) = n2cos(nθ). Hence Tn satisfies the differential equation

(1− x2)T ′′n (x)− xT ′n(x) + n2Tn(x) = 0

Hence, setting Tn(x) =

[n2 ]∑
k=0

an,kx
n−2k, one sees that

(n− 2k + 2)(n− 2k + 1)an,k−1 + 4k(n− k)an,k = 0.

And by telescoping, one obtains an,k = (−1)k2n−2k−1
n

n− k

(
n− k
k

)
. Therefore
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Tn(x) =

[n2 ]∑
k=0

(−1)k2n−2k−1
n

n− k

(
n− k
k

)
xn−2k. (1)

An obvious consequence is that for any k ≤
[n

2

]
, one has the combinatorics equality

[n2 ]∑
m=0

(
n

2m+ 2k

)(
m+ k

m

)
= 2n−2k−1

n

n− k

(
n− k
k

)
.

Since T ′n(x) = nUn−1(x), one has

Un−1(x) =
1

n

[n2 ]∑
k=0

(−1)k2n−2k−1(n− 2k)
n

n− k

(
n− k
k

)
xn−2k−1, which turns to be

Un−1(x) =

[n2 ]∑
k=0

(−1)k2n−2k−1
(
n− 2k

k

)
xn−2k−1. And

Un(x) =

[n+1
2 ]∑

k=0

(−1)k2n−2k
(
n− 2k + 1

k

)
xn−2k.

2 Fixed points of the Chebyshev polynomial Tn

Let K be an algebraically closed field of characteristic 0.
An element x ∈ K is called a fixed point of Tn if Tn(x) = x. For T0 = 1, the only fixed point is 1
and for T1 = x, any element of K is a fixed point. Hence in the sequel we assume that n ≥ 2.

Set x = y+y−1

2 , then Tn(x) = Tn

(
y + y−1

2

)
=
yn + y−n

2
=
y + y−1

2
⇐⇒ y2n + 1 = yn+1 − yn−1 ⇐⇒ (yn−1 − 1)(yn+1 − 1) = 0⇐⇒ yn−1 = 1 or yn+1 = 1.
Hence y = ζ is a (n− 1)-th root of unity or y = η is a (n+ 1)-th root of unity, and

x =
ζ + ζ−1

2
or x =

η + η−1

2
.

Let us notice that 1 = y+y−1

2 ⇐⇒ 2y = y2 + 1 ⇐⇒ (y − 1)2 = 0 ⇐⇒ y = 1. It follows that
Tn(1) = 1, that is 1 is a fixed point of Tn.

Let us notice that this induces the following combinatorics equalities :

[n2 ]∑
k=0

(−1)k2n−2k−1
n

n− k

(
n− k
k

)
= 1 =

[n2 ]∑
k=0

(−1)k
[n2 ]∑
`=0

(
n

2k + 2`

)(
k + `

k

)
.

If x 6= 1 is a fixed point of Tn, we notice above that:
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−†− x =
ζ + ζ−1

2
, with ζ 6= 1 a (n− 1)-th root of unity.

Then T ′n(x) = nUn−1(x) = n
ζn − ζ−n

ζ − ζ−1
= n

ζ − ζ−1

ζ − ζ−1
= n.

−††− Or x =
η + η−1

2
, with η 6= 1 a (n+ 1)-th root of unity.

Then T ′n(x) = nUn−1(x) = n
ηn − η−n

η − η−1
= n

η−1 − η
η − η−1

= −n.

−†††− One has Un−1

(
y + y−1

2

)
=
yn − y−n

y − y−1
=

n−1∑
j=0

yn−2j−1.

It follows that Un−1(1) =

n−1∑
j=0

1 = n and T ′n(1) = nUn−1(1) = n2.

One deduces from the above that the fixed points of Tn, n ≥ 2 are simple.
Furthermore, one has the combinatorics equalities :

[n2 ]∑
k=0

(−1)k2n−2k−1
(
n− 2k

k

)
= n.

N.B.
Let n be a positive integer ≥ 2 and ν a positive integer ≥ 1. For the n-th Chebyshev polynomial

of the first kind Tn, one has T ◦νn = Tnν . Hence the ν-periodic points of Tn are the fixed points of
the polynomial Tnν .

Proposition 4 The fixed points of the n-th Chebyshev polynomial of the first kind Tn, n ≥ 2 in the

field of complex numbers C, are the real numbers cos

(
2kπ

n− 1

)
, 0 ≤ k ≤ n− 1

2
and cos

(
2`π

n+ 1

)
, 0 ≤

` ≤ n+ 1

2
.

They are repelling fixed points.

Proof

Indeed for any positive integer n ≥ 2, the (n−1)-th roots of unity in C are ζk = exp

(
2kπi

n− 1

)
, 0 ≤

k ≤ n− 1. The fixed points of Tn associated to these (n− 1)-th roots of unity are xk =
ζk + ζ−1k

2
=

cos

(
2kπ

n− 1

)
, 0 ≤ k ≤ n− 1

2
.

The other fixed points y` of Tn are the real parts y` =
η` + η−1`

2
, 0 ≤ ` ≤ n+ 1

2
of the (n + 1)-th

roots of unity η` = exp

(
2`πi

n+ 1

)
. Then y` = cos

(
2`π

n+ 1

)
, 0 ≤ ` ≤ n+ 1

2
.

For the fixed points xk 6= 1, one has T ′n(xk) = nUn−1(xk) = n. Then |T ′n(xk)| = n > 1. In the
same way for the fixed points y` 6= 1, one has T ′n(y`) = nUn−1(y`) = −n. Then |T ′n(y`)| = n > 1.
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On the other hand for the fixed point 1, one has T ′n(1) = nUn−1(1) = n2. Then |T ′n(1)| = n2 > 1.
Hence one concludes that any fixed point x of Tn in the complex number field C is a real number

such that |x| ≤ 1 and is a repelling point.

In contrast, in the field of complex p-adic numbers Cp the fixed points cannot be repelling points.

Proposition 5 For n a positive integer ≥ 2, the fixed points x of Tn in the complex p-adic field
Cp are :
−(1)− indifferrent fixed points if p does not divide n
−(2)− attractive fixed points if p divides n.

Proof
Let us remind that if x 6= 1 is a fixed point, then T ′n(x) = ±n and for the fixed point 1, T ′n(1) =

n2. Then if p 6 |n, one has for x a fixed point, one has |T ′n(x)| = 1 and x is an indifferent fixed point.
If p|n, then for x a fixed point |T ′n(x)| < 1 and x is an attractive fixed point.

3 The p-adic dynamic of Tp, p > 2

In this section we consider a prime number p > 2. Let ν be an integer ≥ 1 and let us set q = pν .
According to the previous N.B., for the p-th Chebyshev polynomial of the first kind and for any
positive integer r, one has
Tp
◦r = Tpr . In particular Tq = Tp

◦ν and the ν-periodic points of Tp are the fixed points of Tq.

Lemma 6 One has in the ring of polynomials Zp[x], the congruence Tq(x) ≡ xq(mod pZp[x]).

Proof

One has Tq(x) = 2q−1xq +

[ q2 ]∑
k=1

(−1)k2q−2k−1
q

q − k

(
q − k
k

)
xq−2k.

For 1 ≤ k ≤ [ q2 ] < q, one has vp(k) < vp(q) = ν, where vp is the p-adic valuation, hence

vp(q − k) = min(vp(k), vp(q)) = vp(k) and vp

(
q

q − k

)
= vp(q) − vp(q − k) = ν − vp(k) >

0. Since the binomial cœfficients

(
q − k
k

)
are integers and |(−1)k2q−2k−1| = 1, one sees that∣∣∣∣(−1)k2q−2k−1

q

q − k

(
q − k
k

)∣∣∣∣ ≤ ∣∣∣∣ q

q − k

∣∣∣∣ = |p|ν−vp(k) < 1.

From little Fermat theorem, one deduces that 2q−1 ≡ 1(mod p).
One then obtains the congruence of the Lemma. �

Let Eq be the unique unramified field extension of Qp of degree ν. Its residue field is the finite
field Fq of q elements; the dimension [Fq : Fp] of the extension Fq|Fp is equal ν. The field Eq is
generated over Qp by a (q−1)-th primitive root of unity ξ (see for instance [3]) and Eq contains the

6



group of (q − 1)-th roots of unity which in fact are the Teichmüller representative of the nonzero
elements of Fq.

Since the extension Eq|Qp is unramified, its group of valuation is equal to those of Qp. Let
Λq = {x ∈ Eq / |x| ≤ 1} be the valuation ring of Eq The maximal ideal Λq is equal to pΛq, that is
p is an uniformizer of Eq.

Proposition 7 Let p be a prime number > 2 and q = pν , ν ≥ 1.
Let ξ0 = 0 and (ξ`)1≤`≤q−1 be the finite sequence of the (q− 1)-th roots of unity ordered in such

a way that the p− 1 first are the (p− 1)-th roots of unity with ξ` ≡ `(mod p), 1 ≤ ` ≤ p− 1
Any fixed point of of the q-th Chebyshev polynomial belong to Λq. They can be ordered in the form
0 = w0, w1, · · · , w`, · · · , wq−1 such that w` ≡ ξ`(mod p), 0 ≤ ` ≤ q − 1.

Proof
Since the maximal ideal of the valuation ring Λq is pΛq, the congruence in Lemma 6 can be

extended in the form Tq(x) ≡ xq(mod pΛq[x]), and one has Tq(x) − x ≡ xq − x(mod pΛq[x]). It
follows that T ′q(x) − 1 ≡ −1(mod pΛq[x]). But the zeroes of the polynomial xq − x in the residue
field Λq/pΛq = Fq are simple and are all the elements of this finite field. Applying Hensel lemma,
one sees that the zeroes w0, w1, · · · , w`, · · · , wq−1 of the polynomial Tq(x) − x are simple and the
set of their classes {wk, 0 ≤ ` ≤ q − 1}, modulo pΛq is equal to Fq. Setting w0 = 0 and ξ` the
Teichmüller representative of w` in Λq, which is a (q− 1)-th root of unity, one has w` ≡ ξ`(mod p).
�

An immediate consequence is that the absolute value of any nonzero fixed point of Tq is equal
to 1

N.B. One has another proof of Proposition 7, by using the following Lemma and the fact

that the fixed points of Tq can be expressed, or in the form x =
ξ + ξ−1

2
, with ξ a (q − 1)-th root

of unity or in the form y =
η + η−1

2
, with η a (q + 1)-th root of unity.

Lemma 8 Let q = pν be a power of the prime > 2.
The unramified extension Eq2 of Qp of degree 2ν contains Eq and [Eq2 : Eq] = 2.
The field Eq2 is generated over Qp by the (q − 1)-th and (q + 1)-th roots of unity .

Moreover any (q + 1)-th root of unity η in Eq2 is such that
η + η−1

2
belongs to Eq.

We omit the proof of Lemma 8. �

Lemma 9 Let Lq = {a ∈ Cp / |a| ≤ 1 and |aq − a| ≤ |p|
1
p−1 }. Then Λq ⊂ Lq.

Let m be a positive integer coprime to p.
For any a ∈ Lq the sequence (Tmqk(a))k≥0 converges in Cp and if a belongs to Λq,
then lim

k→+∞
Tmqk(a) ∈ Λq.
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Proof
The polynomial congruence Tq(x) ≡ xq(mod pZp[x]), means that Tq(x) = xq + prq(x), with

rq(x) ∈ Zp[x]. Hence for any t ∈ Cp such that |t| ≤ 1, one has |r(t)| ≤ 1 and |p||rq(t)| ≤ |p| ≤ |p|
1
p−1 .

Since Tmqk+1(t) = Tmqk ◦ Tq(t) = Tmqk(tq + prq(t)); applying the p-adic mean value theorem (cf [7]
or [8]), one sees that |Tmqk+1(t)−Tmqk(tq)| = |Tmqk(tq+prq(t))−Tmqk(tq)| ≤ |prq(t)|‖T ′mqk‖, where

‖T ′mqk‖ is the Gauss norm of the polynomial T ′mqk = mqkUmqk−1, and where Umqk−1 is the (mqk−1)-
th Chebyshev polynomial of the second kind Umqk−1 whose cœfficients are seen to be integer num-
bers. Then ‖T ′mqk‖ = |mqk|‖Umqk−1‖ ≤ |q|k and |Tmqk+1(t)− Tmqk(tq)| ≤ |prq(t)||q|k ≤ |p||q|k.

Let a ∈ Lq, then applying again the p-adic mean value theorem, one has |Tmqk(aq)− Tmqka)| =
|Tmqk(a+ (aq − a))− Tmqka)| ≤ |aq − a|‖T ′mqk‖ ≤ |p|

1
p−1 |mqk| = |p|

1
p−1 |qk|.

Hence for any a ∈ Lq, one obtains:
|Tmqk+1(a)− Tmqk(a)| = |Tmqk(aq + pr(a))− Tmqk(aq) + Tmqk(aq)− Tmqk(a)| ≤
≤ max(|Tmqk(aq + pr(a))− Tmqk(aq)|, |Tmqk(aq)− Tmqk(a)|) ≤
≤ max(|p|, |p|

1
p−1 )|q|k = |p|

1
p−1 |q|k.

Il follows that for any element a of Lq, one has lim
k→+∞

|Tmqk+1(a)−Tmqk(a)| = 0 and the sequence

(Tmqk(a))k≥0 is a Cauchy sequence and then converges in Cp.

Since the residue field of the ring Λq is the finite field Fq, any a ∈ Λq is such that

aq ≡ a(mod pΛq), then |aq − a| < |p| ≤ |p|
1
p−1 , that is a belongs to Lq. Since the cœfficients of the

polynomials are integer numberss, for any a ∈ Λq, one has Tmqk(a) ∈ Λq and lim
k→+∞

Tmqk(a) ∈ Λq.

�

Let us set ϕm(a) = lim
k→+∞

Tmqk(a), for a ∈ Lq and m a positive integer coprime to p.

One has ϕm(a) = lim
k→+∞

Tm ◦ Tqk(a) = Tm

(
lim

k→+∞
Tqk(a)

)
= Tm(ϕ1(a)). On the other hand

ϕ1(a) = lim
k→+∞

Tq ◦ Tqk−1(a) = Tq

(
lim

k→+∞
Tqk−1(a)

)
= Tq(ϕ1(a)).

Then ϕ1(a) is a fixed point of Tq.

The closed discs in Cp (resp. Eq) will be denoted by D+(a, r) (resp. D+
q (a, r)) and the open

discs by D−(a, r) (resp. D−q (a, r)).

Let us put |p|
1
p−1 = ρp.

Remark 10 Let ξ0 = 0 and ξ1, ξ1, · · · , ξq−1 be the (q − 1)-th roots of unity.

Then D+(ξ`, ρp) ⊂ Lq. In fact Lq =
⊔

0≤`≤q−1

D+(ξ`, ρp).
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Proof
Indeed, if a ∈ D+(ξ`, ρp), since ξq` = ξ`, for 1 ≤ ` ≤ q − 1, one has aq − a = aq − ξq` +

ξq` − a = aq − ξq` + ξ` − a, with |aq − ξq` | = |a − ξk|

∣∣∣∣∣∣
`−1∑
j=0

aq−1−jξjk

∣∣∣∣∣∣ ≤ |a − ξ`|. It follows that

|aq − a| ≤ max(|aq − ξq` |, |ξ` − a|) = |a− ξk| ≤ ρp and D+(ξ`, ρp) ⊂ Lq.
For ` = 0, one has |a| = |a− 0| ≤ ρp and obviously |aq − a| = |a| ≤ ρp.
Let a ∈ Lq, since |aq − a| ≤ ρp < 1, one sees on one hand that |aqk − aqk−1 | ≤ ρp and on the

other hand, since aq = a+ c, with |c| < 1, one verifies that (aq
k

)k≥0 is a Cauchy sequence. Hence,

setting ω(a) = lim
k→+∞

aq
k

, one has ω(a)q = ω(a) and |ω(a)− a| ≤ ρp. If ω(a) = 0, then a belongs to

D+(0, ρp). Otherwise, one has ω(a) 6= 0 and ω(a) is a (q − 1)-th root of unity and equal to one of
the ξ`, then |a− ξ`| ≤ ρp, that is a belongs to D+(ξ`, ρp).
It is readily seen that two distinct discs D+(ξ`, ρp) has an empty intersection.

N.B.
−&− Let us set L−q = {a ∈ Cp / |aq − a| < 1}. Then as above L−q =

⊔
0≤`≤q−1

D−(ξ`, 1).

The proof is as that of Remark 10

−&&− The sets Lq and L−q are described in [9] for the case where q = p and called lemniscate.
In fact they are special case of the lemniscates that can be attached to any monic polynomial with
cœfficients in an ultrametric valued field as defined in [1] -Proposition 4.8.1.

Proposition 11 Let w0 = 0, w1, · · · , wq−1 be the fixed points of Tq, i.e. the ν-periodic points of Tp.

Then, for 0 ≤ ` ≤ q − 1 and for a ∈ D+(ξ`, ρp), one has ϕ1(a) = w`.

Proof
Let a ∈ D+(ξ`, ρp), we have seen above that |aq − a| ≤ ρp and that (aq

k

)k≥0 is a Cauchy
sequence.

On the other hand, the polynomials Tqk are such that Tqk(x) = xq
k

+prqk(x), the cœfficients of the

polynomial rqk(x) being integer numbers. Hence for a ∈ D+(ξ`, ρp), one has |Tqk(a)−aqk | ≤ |p| < ρp

and | lim
k→+∞

Tqk(a)− lim
k→+∞

aq
k

| = |ϕ1(a)− ω(a)| = |ϕ1(a)− ξ`| ≤ ρp. As w` is the only fixed point

of Tq with this property, one has ϕ1(a) = w`. �

Remark 12 Let Tn be the n-th Chebyshev polynomial of the first kind, n ≥ 1
If p > 2 and a ∈ Cp is such that |a| > 1, then lim

k→+∞
|Tnk(a)| = +∞.

Proof Indeed since Tnk(x) = 2n
k−1xn

k

+

nk−1∑
j=0

ank,jx
j , with ank,j ∈ Z, for |a| > 1, one has

|ank,j | ·
|aj |

|2nk−1|ank |
≤ |a

j |
|ank |

< 1, for 0 ≤ j ≤ nk − 1.

9



Hence |Tnk(a)| = |2nk−1||ank | ·

∣∣∣∣∣∣1 +

nk−1∑
j=0

ank,j
aj

2nk−1ank

∣∣∣∣∣∣ = |a|nk −→ +∞, when k −→ +∞. �

Let us remind that by definition the basin of attraction of an attractive fixed point x0 for a
dynamical system associated to a function f on a topological set X is the subset Att(x0, f) = {y ∈
X / lim

k→+∞
f◦k(y) = x0}.

Since T ′q = qUq−1, for the fixed points w` of Tq, one has |T ′q(w`)| = |q||Uq−1(w`)| ≤ |q| < 1 and
w` is an attractive fixed point of Tq.

Theorem 13 With the same notations as above, one has Att(w`, Tq) = D−(ξ`, 1).

Proof
− • − Let a ∈ D−(ξ`, 1), that is |a − ξ`| < 1. Since ξq` = ξ, one has aq − ξ` = aq − ξq` =

(a − ξ)
q−1∑
j=0

aq−1−jξ` =⇒ |aq − ξ` ≤ |a − ξ`| < 1 and |aq − a| < 1. Since aq = ξ` + c, with |c| < 1,

one sees that aq
k

= ξ` + ck, with lim
k→+∞

ck = 0, hence lim
k→+∞

aq
k

= ξ`. and he sequence (aq
k

)k≥0 is

a Cauchy sequence. Therefore there exists k0 such that ∀k ≥ k0, one has |aqk+1 − aqk | < ρp.

It follows that aq
k0

belongs to Lq and also aq
k0 ∈ D+(ξ`, ρp).

According to Proposition 11, one has lim
k→+∞

Tq`(a
qk0 ) = w`.

However, Tqk0+k(a) = Tqk(Tqk0 (a)) and Tqk0 (a) = aq
k0

+ prk0(aq
k
0 ), with rk0 ∈ Zp[x).

Applying again the p-adic mean value theorem, one has |Tqk0+k(a)− Tqk(aq
k0

)| =
= |Tqk(aq

k0
+ prk0(aq

k
0 ))− Tqk(aq

k0
)| ≤ ‖T ′qk‖|p| ≤ |p||q|

k.

It follows that lim
k→+∞

Tqk(a) = lim
k→+∞

Tqk0+k(a) = lim
k→+∞

Tqk(Tqk0 (a)) = w` and a ∈ Att(w`, Tq).

Therefore D−(ξ`, 1) ⊆ Att(w`, Tq).

− • − Let a ∈ Att(w`, Tq). By definition lim
k→∞

T ◦kq (a) = w`. Reminding that T ◦kq = Tqk ,

according to Remark 12, one must have |a| ≤ 1.

There exists k0 such that |Tqk(a) − w`| ≤ ρp, ∀k ≥ k0. As above |Tqk(a) − aqk | ≤ |p|. Since

|w` − ξ`| ≤ |p|, one obtains |ξ` − aq
k | = |w` − Tqk(a) + Tqk(a)− w` + w` − ξ`| ≤

≤ max(|w` − Tqk(a)|, |Tqk(a) − w`|, |w` − ξ`|) ≤ ρp < 1. However ξq` = ξ` =⇒ ξq
k

` = ξ`. Hence in

the residue field F̃p of Cp, one has 0 = aq
k

− ξq
k

= (a − ξ`)q
k

=⇒ a = ξ`, that is |a − ξ`| < 1 =⇒
Att(w`, Tq) ⊆ D−(ξ`, 1).

In conclusion Att(w`, Tq) = D−(ξ`, 1). �

Corollary 14 Let Attq(w`, Tq) be the set of attracting points off w` contained in the unramified
field Eq.
Then Attq(w`, Tq) = D+

q (ξ`, |p|).
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Proof It suffices to notice that the unramified field Eq is of discrete valuation and that if a ∈ Eq
is such that |a| < 1, then |a| ≤ |p|. �.

Remark
Let p be a prime number 6= 2. What we have done above is the determination of all the periodic

points of the p-th Chebyshev polynomial of the first kind Tp. Since T ◦νp = Tpν the pν-th Chebyshev
polynomial of the first kind, for any periodic w, taken ν such that T ◦νp (w) = w, one has that w is a
fixed point Tpν and if not equal 0, is congruent modulo the maximal ideal of the valuation ring of
Cp to a pν − 1-th root of unity.

Summarizing, one sees that the periodic points of Tp are in a bijective correspondence with the

residue field F̃p of Cp.

4 The p-adic dynamic of Tn, (n, p) = 1, p ≥ 3

Let us remind that if p is a prime number, then for any integer m ≥ 1 and x0 a fixed point of Tm,
one has |Tm(x0)| = |m| if x0 6= 1 and |Tm(1)| = |m|2, when x0 = 1. If follows that if p does not
divide m, then |Tm(x0)| = 1 for any fixed point x0 of Tm. In other words any fixed point of Tm in
the complex p-adic field Cp is an indifferent point.

Let f : D −→ D be an analytic map, where D is a disc of Cp of finite or infinite radius and let
w be a ν-periodic point of f , if there exists an open disc D−(w, r) such that for any real number
0 < r′ < r the sphere S(w, r′) = {x ∈ Cp / |x−w| = r′} is invariant by fν , one says that D−(w, r)
is a Siegel disc and w a center of a Siegel disc. The union of Siegel discs with center w is called the
Siegel disc and then of maximal radius at w. This is the ultrametric counterpart of the Siegel disc
defined in complex analysis. ( see for the complex case [2] and [4] or [5] for the ultrametric case).

Assume p ≥ 3. Let n be a positive integer ≥ 2, such that n and p are coprime. Hence for any
other integer ν ≥ 1 one has (nν , p) = 1. Since T ◦νn = Tnν , the ν-periodic points are the fixed points

w of Tnν that we know be of the form w =
ξ + ξ−1

2
, where ξ is a (nν − 1)−th root of unity or of

the form w =
η + η−1

2
, where η is a (nν + 1)−th root of unity.

Hence if w is a ν-periodic point of Tn in Cp, one has |w| ≤ 1. Moreover, if ξ2 + 1 6≡ 0(modMp),
(resp. η2 + 1 6≡ 0(mod Mp), where Mp is the maximal ideal of the valuation ring Ap of Cp, then

|w| = 1. Otherwise |w| < 1 and reducing modulo Mp, one has in the residue field Ap/Mp = F̃p
that ζ

2
+ 1 = 0 (resp. η2 + 1 = 0). Applying Hensel lemma, one sees that the root of unity is a

square root of −1 in Cp and then w = 0.

Let Tnν (x) = Tnν (w) +

nν∑
j=1

T
(j)
nν (w)

j!
(x− w)j be the Taylor expansion near w, where T

(j)
nν is the

j-th derivative of Tnν .

However, Tnν (x) =

[n
ν

2 ]∑
k=0

(−1)k2n
ν−2k−1 nν

nν − k

(
nν − k
k

)
xn

ν−2k.

It is then readily seen that for 0 ≤ j ≤ n, one has

11



T
(j)
nν (x)

j!
=

[n
ν

2 ]∑
k=0

(−1)k2n
ν−2k−1

(
nν − 2k

j

)
nν

nν − k

(
nν − k
k

)
xn

ν−2k−j =

=

[n
ν−j
2 ]∑

k=0

(−1)k2n
ν−2k−1 nν

nν − k

(
nν − 2k

j

)(
nν − k
k

)
xn

ν−2k−j .

The cœfficients of the polynomials
T

(j)
nν (x)

j!
are integer numbers.

Hence, since |w| ≤ 1,one sees that∣∣∣∣∣T (j)
nν (w)

j!

∣∣∣∣∣ =

∣∣∣∣∣∣
[n
ν−j
2 ]∑

k=0

(−1)k2n
ν−2k−1 nν

nν − k

(
nν − 2k

j

)(
nν − k
k

)
wn

ν−2k−j

∣∣∣∣∣∣ ≤
≤ max

0≤k≤[nν−j
2 ]
|w|n

ν−2k−j ≤ 1.

Proposition 15 Let p be a prime number different from 2 and n be an integer ≥ 2 such that
p does not divide n.
Then any periodic point w of Tn is an indifferent point, with absolute value ≤ 1 and the Siegel disc
around w is the disc D−(w, 1).

Proof
Let w be a periodic point of Tn of periodic ν. Then Tnν (w) = w and Tnν (x)− w =

= Tnν (x)− Tnν (w) =

nν∑
j=1

T
(j)
nν (w)

j!
(x− w)j = (x− w)

nν∑
j=1

T
(j)
nν (w)

j!
(x− w)j−1 =

= (x− w)

Tnν (w) +

nν∑
j=2

T
(j)
nν (w)

j!
(x− w)j−1

 .

But

∣∣∣∣∣∣
nν∑
j=2

T
(j)
nν (w)

j!
(x− w)j−1

∣∣∣∣∣∣ ≤ max
2≤j≤nν

∣∣∣∣∣T (j)
nν (w)

j!

∣∣∣∣∣ |x− w|j−1 ≤ max
2≤j≤nν

|x− w|j−1.

Then if |x− w| < 1, one has

∣∣∣∣∣∣
nν∑
j=2

T
(j)
nν (w)

j!
(x− w)j−1

∣∣∣∣∣∣ ≤ max
2≤j≤nν

|x− w|j−1 < 1.

Since |T ′nν (w)| = 1, for |x− w| < 1, one obtains |Tnν (x)− w| = |x− w|.

Let 0 < r′ < r < 1 be two real numbers, elements of |Cp| \ {0}.
If |x− w| = r′, then |Tnν (x)− w| = |x− w| = r′, it follows that the sphere S(w, r′) is invariant

by Tnν .
This shows that D−(w, 1) is the Siegel disc around w.

N.B. If the integer numbers n and ν are such that nν − 1 = pµ a power of p, then if ζ is a
primitive nν −1-th root of unity the field Qp[ζ] is a totally ramified extension of Qp. It follows that
this field has the same residue field Fp as Qp. If nν − 1 = pk, k ≥ 2 there are distinct ν-periodic

points of Tn in

{
ξ + ξ−1

2
6= 0, ξn

ν−1 = 1

}
whose residue classes are equal in Fp.
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Scholie

−†− Above we have supposed that the prime number p is different from 2 without giving any
explanation. But let us consider the expansion of the Chebyshev polynomials:

T2m(x) =

m∑
k=0

(−1)k22(m−k)−1
2m

2m− k

(
2m− k
k

)
x2(m−k) =

= 22m−1x2m +

m−1∑
k=1

(−1)k
m∑
k=0

(−1)k22(m−k)−1
2m

2m− k

(
2m− k
k

)
x2(m−k) + (−1)m.

It follows that in the polynomial ring Z[x], one has the congruence

T2m(x) ≡ 1(mod 2Z[x])

Also T2m+1 = 22mx2m+1 +

m−1∑
k=1

(−1)k
m∑
k=0

(−1)k22(m−k)
2m+ 1

2m− k + 1

(
2m− k + 1

k

)
x2(m−k)+1 +

(−1)m(2m+ 1)x. Therefore

T2m+1(x) ≡ x(mod 2Z[x])

Hence the method used to locate periodic points of the polynomial Tp cannot be applied when
p = 2.

Nevertheless if w in a fixed point of the Chebyshev polynomial Tn, one has in the field of 2-
adic complex numbers C2 that |T ′n(w)|2 = |n|2 if w 6= 1 and |T ′n(1)|2 = |n2|2. Then if n is even
|T ′n(w)| < 1 and any fixed point w of Tn is an attractive point in C2. On the other hand, if n is
odd, one has |T ′n(w)| = 1 and the fixed point w of Tn is indifferent. By the same way, any periodic
point of Tn is an attractive point if n is even and an indifferent point if n is odd.

The fixed points of the second Chebyshev polynomial T2(x) = 2x2 − 1 are 1 and −1

2
. Hence in

contrast with the cas p 6= 2, one has

∣∣∣∣−1

2

∣∣∣∣
2

= 2 > 1.

However for any positive integer ν ≥ 1, the ν-periodic points in C2 lie in the ν-dimensional unram-
ified extension E2ν of Q2. Indeed one can apply Lemma 8 and the Nota Bene before it to prove

that, since T ◦ν2 = T2ν , the ν-periodic points are of the form w =
ξ + ξ−1

2
where ξ is a (2ν − 1)-th

root of unity or w =
η + η−1

2
where η is a (2ν + 1)-th root of unity.

For ν = 2, since 22 − 1 = 3 the 3-th roots of unity (cubic roots of unity) in C2 are 1 and the

roots of the polynomial x2 +x+ 1 that we write in the forms j = −1

2
+

√
−3

2
and j2 = −1

2
+

√
−3

2
.

The corresponding unramified field extension of dimension 2 over Q2 is E4 = Q2[j] = Q2[
√
−3]

For 22 + 1 = 5 the 5-th roots of unity are 1 and the roots of the polynomial x4 +x3 +x2 +x+ 1.

A classical procedure of the resolution of this quartic equation by setting u = x +
1

x
yields to the

auxillary equation u2 + u − 1 = 0 which has two solutions u± = −1

2
±
√

5

2
. Notice that since

5 ≡ −3(mod 8), one has
√

5 = δ
√
−3 ∈ E4, with δ the square root of 1− 3−18 which belongs to Q2

and E4 = Q2[
√

5]. Moreover x2−u±x+1 = 0 =⇒ 2x2+(1+
√

5)x+2 = 0, or 2x2+(1−
√

5)x+2 = 0.
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Then

(
x+

1 +
√

5

4

)2

=
2
√

5− 10

16
or

(
x+

1−
√

5

4

)2

=
2
√

5− 10

16
, with

2
√

5− 10

16
∈ E4. Let us

denote by θ ∈ C2 a root of the polynomial X2 − (2
√

5− 10) ∈ E4[X], one obtains the 5-th roots of

unity in the form η1 = −1 +
√

5

4
+
θ

4
, η2 = −1 +

√
5

4
− θ

4
, with η−11 = η2 and

η3 =

√
5− 1

4
+
θ

4
, η4 =

√
5− 1

4
− θ

4
, with η−13 = η4. From these 5-th roots of unity in C2, one obtains

the 2-periodic points w3 = −1 +
√

5

4
and w4 =

√
5− 1

4
that belongs to E4. The other 2-periodic

points of T2 are the fixed points 1 and −1

2
. The 2-periodic points w3 and w4 are conjugated in the

quadratic extension E4 of Q2, with norm w3w4 = −1

4
wich implies that |w3| = |w4| =

∣∣∣∣−1

4

∣∣∣∣ 12
2

= 2.

The period of w3 and w4 is 2.
More generally, one can prove that for any integer ν ≥ 1, if w is a ν-periodic point in C2 different

from 1, then |w|2 = 2.

−††− One immediately verifies that if the prime p is different from 2, then since the leading
cœfficient of the Chebyshev polynomial Tn, n ≥ 2, is equal to 2n−1, then the leading cœfiicient of
the reduced polynomial modulo p is the class of 2n−1 that is different from 0. Hence the polynomial
Tn, n ≥ 2, has good reduction modulo p and one deduces from a well known theorem of Morton
and Silverman ([6]) that the p-adic Julia set of Tn is the empty set.
The congruences modulo 2 for the Chebyshev polynomials Tn, n ≥ 2 quoted above show that these
polynomials have bad reduction modulo 2. However, one can prove directly that the p-adic Julia
set of any polynomial Chebyshev Tn of degree n ≥ 2 , is the empty set, regardless the prime number
p is 2 or odd.
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