p-Adic dynamical systems of Chebyshev polynomials

Bertin DIARRA, Djeidi SYLLA

March 21, 2013

Abstract

We study the behaviour of the iterates of the Chebyshev polynomials of the first kind in p-adic fields. In particular, we determine in the field of complex p-adic numbers for p > 2, the periodic points of the p-th Chebyshev polynomial of the first kind. These periodic points are attractive points. We describe their basin of attraction. The classification of finite fields extensions of the field of p-adic numbers \mathbb{Q}_p , enables one to locate precisely, for any integer $\nu \geq 1$, the ν -periodic points of T_p : they are simple and the nonzero ones lie in the unit circle of the unramified extension of \mathbb{Q}_p , (p > 2) of degree ν . This generalizes a result, stated by M. Zuber in his PhD thesis, giving the fixed points of T_p in the field \mathbb{Q}_p , (p > 2).

1 Classical formulas for Chebyshev polynomials

Let $i = \sqrt{-1}$ and $\mathbb{Q}[i]$ the quadratic field over the thield of the rational numbers. Let $\mathbb{Q}[i][[\theta]]$ (resp. $\mathbb{Q}[i]((\theta))$) be the algebra (resp. the field) of formal power series (resp. formal Laurent series) with indeterminate θ and coefficients in $\mathbb{Q}[i]$.

Let us consider the following formal trigonometric series, elements of $\mathbb{Q}[i][[\theta]]$:

$$\exp(i\theta) = \sum_{k\geq 0} \frac{i^k}{k!} \theta^k$$
$$\cos(\theta) = \frac{\exp(i\theta) + \exp(-i\theta)}{2} = \sum_{k\geq 0} \frac{(-1)^k}{(2k)!} \theta^{2k}$$
$$\sin(\theta) = \frac{\exp(i\theta) - \exp(-i\theta)}{2i} = \sum_{k\geq 1} \frac{(-1)^{k-1}}{(2k+1)!} \theta^{2k+1}$$

One has $\exp(i\theta) = \cos(\theta) + i\sin(\theta)$. In the algebra of formal power series in two variables $\mathbb{Q}[i][[\theta, \theta']]$, from the fact that $\exp(i(\theta + \theta')) = \exp(i\theta) + \exp(i\theta')$ one deduces the usual addition and subtraction formulas for the formal trigonometric series, $\cos(\theta)^2 + \sin(\theta)^2 = 1$, etc...

There exists a sequence of polynomials $(T_n)_{n\geq 0}$ such that $T_n(\cos\theta) = \cos(n\theta)$. The polynomial T_n is called the *n*-th Chebyshev polynomial of the first kind.

If *m* and *n* are positive integers one has $T_m(T_n(\cos(\theta))) = T_m(\cos(n\theta)) = \cos(mn\theta) = T_{mn}(\cos(\theta))$. On the other hand since $\cos((n+1)\theta) = \cos(n\theta)\cos(\theta) - \sin(n\theta)\sin(\theta)$ and $\cos((n-1)\theta) = \cos(n\theta)\cos(\theta) + \sin(n\theta)\sin(\theta)$, one sees that $T_{n+1}(\cos(\theta)) + T_{n-1}(\cos(\theta)) = T_1(\cos(\theta))T_n(\cos(\theta))$. As a consequence, one has

 (\circ) - m - n - m - m - m

A consequence of the property (3) is that the sequence $(T_n)_{n\geq 0}$ is a commutative monoid with respect to the operation of composition, the identity element being $T_1 = x$ and $T_n^{\circ k} = T_{n^k}$, $\forall n, k$.

Corollary 2 The polynomial T_n is of degree n, whose coefficients are integers with its leading coefficient equal to 2^{n-1}

Differentiating the relation $T_n(\cos\theta) = \cos(n\theta)$, one obtains $\frac{d}{d\theta}T_n(\cos(\theta)) = -\sin(\theta)T'_n(\cos(\theta)) = -n\sin(n\theta)$. Then $T'_n(\cos\theta) = n\frac{\sin(n\theta)}{\sin(\theta)}$.

The sequence of Chebyshev polynomials of the second kind is the sequence of polynomials U_n such that $U_n(\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin(\theta)}$. Since $\sin((n+1)\theta) + \sin((n-1)\theta) = 2\cos(\theta)\sin(n\theta)$, one sees that $U_n(\cos(\theta)) + U_{n-2}(\cos(\theta)) = 2\cos(\theta)U_{n-1}(\cos(\theta))$.

Lemma 3 The sequence of Chebyshev polynomials of the second kind satisfies the following properties:

$$\begin{array}{ll} -(1) - & U_0 = 1, U_1(x) = 2x. \\ -(2) - & U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x), \ \forall n \ge 1. \ The \ degree \ of \ U_n \ is \ equal \ to \ n = -(3) - & T'_n(x) = nU_{n-1}(x). \end{array}$$

Let us do the change of variable by putting $\exp(i\theta) = y$. Then formally, the TChebyshev polynomials of first and second kinds are also given by substitution of the fraction $\frac{y+y^{-1}}{2}$:

$$T_n\left(\frac{y+y^{-1}}{2}\right) = \frac{y^n + y^{-n}}{2}$$
$$U_n\left(\frac{y+y^{-1}}{2}\right) = \frac{y^{n+1} - y^{-n-1}}{y-y^{-1}}$$

One consequence is that for any integer $n \ge 0$, one has:

$$T_n(-x) = (-1)^n T_n(x)$$
 and $U_n(-x) = (-1)^n U_n(x)$.

Let us do another change of variable $\frac{y+y^{-1}}{2} = x$, that is $y^2 + 1 = 2xy \iff (y-x)^2 = -(1-x^2) = i^2(1-x^2)$. The square roots of $(1-x^2)$ exist in the ring of formal power series $\mathbb{Q}[i][[x]]$, with one taken to be $\sqrt{1-x^2} = \sum_{\ell \ge 0} (-1)^\ell {\binom{1}{2} \choose \ell} x^{2\ell}$. Therefore $y = x \pm i\sqrt{1-x^2}$. Putting $y = x + i\sqrt{1-x^2}$, one has $y^{-1} = x - i\sqrt{1-x^2}$ and

$$T_n(x) = \frac{1}{2} \left(x + i\sqrt{1-x^2} \right)^n + \frac{1}{2} \left(x - i\sqrt{1-x^2} \right)^n$$

Since
$$(x + i\sqrt{1 - x^2})^n = \sum_{m=0}^n \binom{n}{m} i^m x^{n-m} (1 - x^2)^{\frac{m}{2}} = \sum_{2m \le n} \sum_{m=0}^n \binom{n}{2m} (-1)^m x^{n-2m} (1 - x^2)^m + i \sum_{2m+1 \le n} \binom{n}{m} (-1)^m x^{n-2m-1} (1 - x^2)^{\frac{2m+1}{2}}$$
 and
 $(x - i\sqrt{1 - x^2})^n = \sum_{2m \le n} \binom{n}{2m} (-1)^m x^{n-2m} (1 - x^2)^m - i \sum_{2m+1 \le n} \binom{n}{2m+1} (-1)^m x^{n-2m-1} (1 - x^2)^{\frac{2m+1}{2}}$, one obtains
 $T_n(x) = \sum_{2m \le n} \binom{n}{2m} (-1)^m x^{n-2m} (1 - x^2)^m.$

On the other hand $(1 - x^2)^m = \sum_{k+\ell=m} \binom{m}{k} (-1)^\ell x^{2\ell}$. Then $T_n(x) = \sum_{2k+2\ell \le n} \binom{n}{2k+2\ell} (-1)^{k+2\ell} \binom{k+\ell}{k} x^{n-2k-2\ell} x^{2\ell} =$ $= \sum_{2k \le n} (-1)^k \sum_{2\ell \le n} \binom{n}{2k+2\ell} \binom{k+\ell}{k} x^{n-2k}$. That is $T_n(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k+2\ell} \binom{k+\ell}{k} x^{n-2k}$.

By differentiating the relation $\sin(\theta)T'_n(\cos(\theta)) = n\sin(n\theta)$, one obtains $\cos(\theta)T'_n(\cos(\theta)) - \sin(\theta)^2T''_n(\cos(\theta)) = n^2\cos(n\theta)$. Hence T_n satisfies the differential equation

$$(1 - x^2)T_n''(x) - xT_n'(x) + n^2T_n(x) = 0$$

Hence, setting $T_n(x) = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} a_{n,k} x^{n-2k}$, one sees that $(n-2k+2)(n-2k+1)a_{n,k-1} + 4k(n-k)a_{n,k} = 0.$ And by telescoping, one obtains $a_{n,k} = (-1)^k 2^{n-2k-1} \frac{n}{n-k} \binom{n-k}{k}$. Therefore

$$T_n(x) = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k 2^{n-2k-1} \frac{n}{n-k} \binom{n-k}{k} x^{n-2k}.$$
 (1)

An obvious consequence is that for any $k \leq \left[\frac{n}{2}\right]$, one has the combinatorics equality

$$\sum_{m=0}^{\left[\frac{n}{2}\right]} \binom{n}{2m+2k} \binom{m+k}{m} = 2^{n-2k-1} \frac{n}{n-k} \binom{n-k}{k}.$$

Since $T'_n(x) = nU_{n-1}(x)$, one has

$$U_{n-1}(x) = \frac{1}{n} \sum_{k=0}^{\lfloor 2 \rfloor} (-1)^k 2^{n-2k-1} (n-2k) \frac{n}{n-k} \binom{n-k}{k} x^{n-2k-1}, \text{ which turns to be}$$
$$U_{n-1}(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k 2^{n-2k-1} \binom{n-2k}{k} x^{n-2k-1}. \text{ And}$$
$$U_n(x) = \sum_{k=0}^{\lfloor \frac{n+1}{2} \rfloor} (-1)^k 2^{n-2k} \binom{n-2k+1}{k} x^{n-2k}.$$

2 Fixed points of the Chebyshev polynomial T_n

Let K be an algebraically closed field of characteristic 0. An element $x \in K$ is called a fixed point of T_n if $T_n(x) = x$. For $T_0 = 1$, the only fixed point is 1 and for $T_1 = x$, any element of K is a fixed point. Hence in the sequel we assume that $n \ge 2$.

and for $T_1 = x$, any element of K is a fixed point. Hence in the sequel we assume that $n \ge 2$. Set $x = \frac{y+y^{-1}}{2}$, then $T_n(x) = T_n\left(\frac{y+y^{-1}}{2}\right) = \frac{y^n + y^{-n}}{2} = \frac{y+y^{-1}}{2}$ $\iff y^{2n} + 1 = y^{n+1} - y^{n-1} \iff (y^{n-1} - 1)(y^{n+1} - 1) = 0 \iff y^{n-1} = 1 \text{ or } y^{n+1} = 1.$ Hence $y = \zeta$ is a (n-1)-th root of unity or $y = \eta$ is a (n+1)-th root of unity, and $x = \frac{\zeta + \zeta^{-1}}{2}$ or $x = \frac{\eta + \eta^{-1}}{2}.$

Let us notice that $1 = \frac{y+y^{-1}}{2} \iff 2y = y^2 + 1 \iff (y-1)^2 = 0 \iff y = 1$. It follows that $T_n(1) = 1$, that is 1 is a fixed point of T_n .

Let us notice that this induces the following combinatorics equalities :

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k 2^{n-2k-1} \frac{n}{n-k} \binom{n-k}{k} = 1 = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \sum_{\ell=0}^{\left[\frac{n}{2}\right]} \binom{n}{2k+2\ell} \binom{k+\ell}{k}.$$

If $x \neq 1$ is a fixed point of T_n , we notice above that:

 $\begin{aligned} -\dagger - & x = \frac{\zeta + \zeta^{-1}}{2}, \text{ with } \zeta \neq 1 \text{ a } (n-1) \text{-th root of unity.} \\ \text{Then } T'_n(x) = nU_{n-1}(x) = n\frac{\zeta^n - \zeta^{-n}}{\zeta - \zeta^{-1}} = n\frac{\zeta - \zeta^{-1}}{\zeta - \zeta^{-1}} = n. \\ -\dagger \dagger - & \text{Or } x = \frac{\eta + \eta^{-1}}{2}, \text{ with } \eta \neq 1 \text{ a } (n+1) \text{-th root of unity.} \\ \text{Then } T'_n(x) = nU_{n-1}(x) = n\frac{\eta^n - \eta^{-n}}{\eta - \eta^{-1}} = n\frac{\eta^{-1} - \eta}{\eta - \eta^{-1}} = -n. \\ -\dagger \dagger \dagger - & \text{One has } U_{n-1}\left(\frac{y + y^{-1}}{2}\right) = \frac{y^n - y^{-n}}{y - y^{-1}} = \sum_{j=0}^{n-1} y^{n-2j-1}. \\ \text{It follows that } U_{n-1}(1) = \sum_{j=0}^{n-1} 1 = n \text{ and } T'_n(1) = nU_{n-1}(1) = n^2. \end{aligned}$

One deduces from the above that the fixed point

One deduces from the above that the fixed points of $T_n, n \geq 2$ are simple. Furthermore, one has the combinatorics equalities :

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k 2^{n-2k-1} \binom{n-2k}{k} = n.$$

N.B.

Let n be a positive integer ≥ 2 and ν a positive integer ≥ 1 . For the n-th Chebyshev polynomial of the first kind T_n , one has $T_n^{\circ\nu} = T_{n^{\nu}}$. Hence the ν -periodic points of T_n are the fixed points of the polynomial $T_{n^{\nu}}$.

Proposition 4 The fixed points of the n-th Chebyshev polynomial of the first kind $T_n, n \ge 2$ in the field of complex numbers \mathbb{C} , are the real numbers $\cos\left(\frac{2k\pi}{n-1}\right), 0 \le k \le \frac{n-1}{2}$ and $\cos\left(\frac{2\ell\pi}{n+1}\right), 0 \le m+1$

$$\ell \le \frac{n+1}{2}.$$

They are repelling fixed points.

Proof

Indeed for any positive integer $n \ge 2$, the (n-1)-th roots of unity in \mathbb{C} are $\zeta_k = \exp\left(\frac{2k\pi i}{n-1}\right), 0 \le k \le n-1$. The fixed points of T_n associated to these (n-1)-th roots of unity are $x_k = \frac{\zeta_k + \zeta_k^{-1}}{2} = \cos\left(\frac{2k\pi}{n-1}\right), 0 \le k \le \frac{n-1}{2}$.

The other fixed points y_{ℓ} of T_n are the real parts $y_{\ell} = \frac{\eta_{\ell} + \eta_{\ell}^{-1}}{2}, 0 \le \ell \le \frac{n+1}{2}$ of the (n+1)-th roots of unity $\eta_{\ell} = \exp\left(\frac{2\ell\pi i}{n+1}\right)$. Then $y_{\ell} = \cos\left(\frac{2\ell\pi}{n+1}\right), 0 \le \ell \le \frac{n+1}{2}$. For the fixed points $x_k \ne 1$, one has $T'_n(x_k) = nU_{n-1}(x_k) = n$. Then $|T'_n(x_k)| = n > 1$. In the

For the fixed points $x_k \neq 1$, one has $T'_n(x_k) = nU_{n-1}(x_k) = n$. Then $|T'_n(x_k)| = n > 1$. In the same way for the fixed points $y_\ell \neq 1$, one has $T'_n(y_\ell) = nU_{n-1}(y_\ell) = -n$. Then $|T'_n(y_\ell)| = n > 1$.

On the other hand for the fixed point 1, one has $T'_n(1) = nU_{n-1}(1) = n^2$. Then $|T'_n(1)| = n^2 > 1$. Hence one concludes that any fixed point x of T_n in the complex number field \mathbb{C} is a real number such that $|x| \leq 1$ and is a repelling point.

In contrast, in the field of complex p-adic numbers \mathbb{C}_p the fixed points cannot be repelling points.

Proposition 5 For n a positive integer ≥ 2 , the fixed points x of T_n in the complex p-adic field \mathbb{C}_p are :

-(1)- indifferent fixed points if p does not divide n

-(2)- attractive fixed points if p divides n.

Proof

Let us remind that if $x \neq 1$ is a fixed point, then $T'_n(x) = \pm n$ and for the fixed point $1, T'_n(1) = n^2$. Then if $p \not| n$, one has for x a fixed point, one has $|T'_n(x)| = 1$ and x is an indifferent fixed point. If p|n, then for x a fixed point $|T'_n(x)| < 1$ and x is an attractive fixed point.

3 The *p*-adic dynamic of T_p , p > 2

In this section we consider a prime number p > 2. Let ν be an integer ≥ 1 and let us set $q = p^{\nu}$. According to the previous N.B., for the *p*-th Chebyshev polynomial of the first kind and for any positive integer r, one has

 $T_p^{\circ r} = T_{p^r}$. In particular $T_q = T_p^{\circ \nu}$ and the ν -periodic points of T_p are the fixed points of T_q .

Lemma 6 One has in the ring of polynomials $\mathbb{Z}_p[x]$, the congruence $T_q(x) \equiv x^q \pmod{p\mathbb{Z}_p[x]}$.

Proof

One has
$$T_q(x) = 2^{q-1}x^q + \sum_{k=1}^{\lfloor 2 \rfloor} (-1)^k 2^{q-2k-1} \frac{q}{q-k} {q-k \choose k} x^{q-2k}.$$

[9]

For $1 \leq k \leq \left[\frac{q}{2}\right] < q$, one has $v_p(k) < v_p(q) = \nu$, where v_p is the *p*-adic valuation, hence $v_p(q-k) = \min(v_p(k), v_p(q)) = v_p(k)$ and $v_p\left(\frac{q}{q-k}\right) = v_p(q) - v_p(q-k) = \nu - v_p(k) > 0$. Since the binomial coefficients $\binom{q-k}{k}$ are integers and $|(-1)^k 2^{q-2k-1}| = 1$, one sees that $\left|(-1)^k 2^{q-2k-1}\frac{q}{q-k}\binom{q-k}{k}\right| \leq \left|\frac{q}{q-k}\right| = |p|^{\nu-v_p(k)} < 1$. From little Fermat theorem, one deduces that $2^{q-1} \equiv 1 \pmod{p}$.

From little Fermat theorem, one deduces that $2^{q-1} \equiv 1 \pmod{p}$ One then obtains the congruence of the Lemma. \Box

Let \mathbb{E}_q be the unique unramified field extension of \mathbb{Q}_p of degree ν . Its residue field is the finite field \mathbb{F}_q of q elements; the dimension $[\mathbb{F}_q : \mathbb{F}_p]$ of the extension $\mathbb{F}_q | \mathbb{F}_p$ is equal ν . The field \mathbb{E}_q is generated over \mathbb{Q}_p by a (q-1)-th primitive root of unity ξ (see for instance [3]) and \mathbb{E}_q contains the group of (q-1)-th roots of unity which in fact are the Teichmüller representative of the nonzero elements of \mathbb{F}_q .

Since the extension $\mathbb{E}_q | \mathbb{Q}_p$ is unramified, its group of valuation is equal to those of \mathbb{Q}_p . Let $\Lambda_q = \{x \in \mathbb{E}_q \mid |x| \leq 1\}$ be the valuation ring of \mathbb{E}_q The maximal ideal Λ_q is equal to $p\Lambda_q$, that is p is an uniformizer of \mathbb{E}_q .

Proposition 7 Let p be a prime number > 2 and $q = p^{\nu}, \nu \ge 1$.

Let $\xi_0 = 0$ and $(\xi_\ell)_{1 \le \ell \le q-1}$ be the finite sequence of the (q-1)-th roots of unity ordered in such a way that the p-1 first are the (p-1)-th roots of unity with $\xi_\ell \equiv \ell \pmod{p}, 1 \le \ell \le p-1$ Any fixed point of of the q-th Chebyshev polynomial belong to Λ_q . They can be ordered in the form $0 = w_0, w_1, \cdots, w_\ell, \cdots, w_{q-1}$ such that $w_\ell \equiv \xi_\ell \pmod{p}, 0 \le \ell \le q-1$.

Proof

Since the maximal ideal of the valuation ring Λ_q is $p\Lambda_q$, the congruence in Lemma 6 can be extended in the form $T_q(x) \equiv x^q \pmod{p\Lambda_q[x]}$, and one has $T_q(x) - x \equiv x^q - x \pmod{p\Lambda_q[x]}$. It follows that $T'_q(x) - 1 \equiv -1 \pmod{p\Lambda_q[x]}$. But the zeroes of the polynomial $x^q - x$ in the residue field $\Lambda_q/p\Lambda_q = \mathbb{F}_q$ are simple and are all the elements of this finite field. Applying Hensel lemma, one sees that the zeroes $w_0, w_1, \dots, w_\ell, \dots, w_{q-1}$ of the polynomial $T_q(x) - x$ are simple and the set of their classes $\{\overline{w}_k, 0 \leq \ell \leq q-1\}$, modulo $p\Lambda_q$ is equal to \mathbb{F}_q . Setting $w_0 = 0$ and ξ_ℓ the Teichmüller representative of \overline{w}_ℓ in Λ_q , which is a (q-1)-th root of unity, one has $w_\ell \equiv \xi_\ell \pmod{p}$. \Box

An immediate consequence is that the absolute value of any nonzero fixed point of T_q is equal to 1

N.B. One has another proof of Proposition 7, by using the following Lemma and the fact that the fixed points of T_q can be expressed, or in the form $x = \frac{\xi + \xi^{-1}}{2}$, with ξ a (q-1)-th root of unity or in the form $y = \frac{\eta + \eta^{-1}}{2}$, with η a (q+1)-th root of unity.

Lemma 8 Let $q = p^{\nu}$ be a power of the prime > 2. The unramified extension \mathbb{E}_{q^2} of \mathbb{Q}_p of degree 2ν contains \mathbb{E}_q and $[\mathbb{E}_{q^2} : \mathbb{E}_q] = 2$. The field \mathbb{E}_{q^2} is generated over \mathbb{Q}_p by the (q-1)-th and (q+1)-th roots of unity. Moreover any (q+1)-th root of unity η in \mathbb{E}_{q^2} is such that $\frac{\eta + \eta^{-1}}{2}$ belongs to \mathbb{E}_q .

We omit the proof of Lemma 8. \Box

Lemma 9 Let $L_q = \{a \in \mathbb{C}_p \ | \ |a| \leq 1 \text{ and } |a^q - a| \leq |p|^{\frac{1}{p-1}}\}$. Then $\Lambda_q \subset L_q$. Let *m* be a positive integer coprime to *p*. For any $a \in L_q$ the sequence $(T_{mq^k}(a))_{k\geq 0}$ converges in \mathbb{C}_p and if *a* belongs to Λ_q , then $\lim_{k \to +\infty} T_{mq^k}(a) \in \Lambda_q$.

Proof

The polynomial congruence $T_q(x) \equiv x^q \pmod{p\mathbb{Z}_p[x]}$, means that $T_q(x) = x^q + pr_q(x)$, with $r_q(x) \in \mathbb{Z}_p[x]$. Hence for any $t \in \mathbb{C}_p$ such that $|t| \leq 1$, one has $|r(t)| \leq 1$ and $|p||r_q(t)| \leq |p| \leq |p|^{\frac{1}{p-1}}$. Since $T_{mq^{k+1}}(t) = T_{mq^k} \circ T_q(t) = T_{mq^k}(t^q + pr_q(t))$; applying the *p*-adic mean value theorem (cf [7] or [8]), one sees that $|T_{mq^{k+1}}(t) - T_{mq^k}(t^q)| = |T_{mq^k}(t^q + pr_q(t)) - T_{mq^k}(t^q)| \leq |pr_q(t)| ||T'_{mq^k}||$, where $||T'_{mq^k}||$ is the Gauss norm of the polynomial $T'_{mq^k} = mq^k U_{mq^{k-1}}$, and where $U_{mq^{k-1}}$ is the (mq^k-1) -th Chebyshev polynomial of the second kind $U_{mq^{k-1}}$ whose coefficients are seen to be integer numbers. Then $||T'_{mq^k}|| = |mq^k|||U_{mq^k-1}|| \leq |q|^k$ and $|T_{mq^{k+1}}(t) - T_{mq^k}(t^q)| \leq |pr_q(t)||q|^k \leq |p||q|^k$.

Let $a \in L_q$, then applying again the *p*-adic mean value theorem, one has $|T_{mq^k}(a^q) - T_{mq^k}a)| = |T_{mq^k}(a + (a^q - a)) - T_{mq^k}a)| \le |a^q - a| ||T'_{mq^k}|| \le |p|^{\frac{1}{p-1}} |mq^k| = |p|^{\frac{1}{p-1}} |q^k|.$

Hence for any $a \in L_q$, one obtains:

 $\begin{aligned} |T_{mq^{k+1}}(a) - T_{mq^{k}}(a)| &= |T_{mq^{k}}(a^{q} + pr(a)) - T_{mq^{k}}(a^{q}) + T_{mq^{k}}(a^{q}) - T_{mq^{k}}(a)| \leq \\ &\leq \max(|T_{mq^{k}}(a^{q} + pr(a)) - T_{mq^{k}}(a^{q})|, |T_{mq^{k}}(a^{q}) - T_{mq^{k}}(a)|) \leq \\ &\leq \max(|p|, |p|^{\frac{1}{p-1}})|q|^{k} = |p|^{\frac{1}{p-1}}|q|^{k}. \end{aligned}$

Il follows that for any element a of L_q , one has $\lim_{k \to +\infty} |T_{mq^{k+1}}(a) - T_{mq^k}(a)| = 0$ and the sequence $(T_{mq^k}(a))_{k\geq 0}$ is a Cauchy sequence and then converges in \mathbb{C}_p .

Since the residue field of the ring Λ_q is the finite field \mathbb{F}_q , any $a \in \Lambda_q$ is such that $a^q \equiv a \pmod{p\Lambda_q}$, then $|a^q - a| < |p| \le |p|^{\frac{1}{p-1}}$, that is a belongs to L_q . Since the coefficients of the polynomials are integer numberss, for any $a \in \Lambda_q$, one has $T_{mq^k}(a) \in \Lambda_q$ and $\lim_{k \to +\infty} T_{mq^k}(a) \in \Lambda_q$. \Box

Let us set $\varphi_m(a) = \lim_{k \to \pm\infty} T_{mq^k}(a)$, for $a \in L_q$ and m a positive integer coprime to p.

One has $\varphi_m(a) = \lim_{k \to +\infty} T_m \circ T_{q^k}(a) = T_m \left(\lim_{k \to +\infty} T_{q^k}(a) \right) = T_m(\varphi_1(a))$. On the other hand $\varphi_1(a) = \lim_{k \to +\infty} T_q \circ T_{q^{k-1}}(a) = T_q \left(\lim_{k \to +\infty} T_{q^{k-1}}(a) \right) = T_q(\varphi_1(a))$. Then $\varphi_1(a)$ is a fixed point of T_q .

The closed discs in \mathbb{C}_p (resp. \mathbb{E}_q) will be denoted by $D^+(a,r)$ (resp. $D_q^+(a,r)$) and the open discs by $D^-(a,r)$ (resp. $D_q^-(a,r)$). Let us put $|p|^{\frac{1}{p-1}} = \rho_p$.

Remark 10 Let $\xi_0 = 0$ and $\xi_1, \xi_1, \cdots, \xi_{q-1}$ be the (q-1)-th roots of unity. Then $D^+(\xi_\ell, \rho_p) \subset L_q$. In fact $L_q = \bigsqcup_{0 \le \ell \le q-1} D^+(\xi_\ell, \rho_p)$.

Proof

Indeed, if $a \in D^+(\xi_{\ell}, \rho_p)$, since $\xi_{\ell}^q = \xi_{\ell}$, for $1 \leq \ell \leq q-1$, one has $a^q - a = a^q - \xi_{\ell}^q + \xi_{\ell}^q - a = a^q - \xi_{\ell}^q + \xi_{\ell} - a$, with $|a^q - \xi_{\ell}^q| = |a - \xi_k| \left| \sum_{j=0}^{\ell-1} a^{q-1-j} \xi_k^j \right| \leq |a - \xi_{\ell}|$. It follows that $|a^q - a| \leq \max(|a^q - \xi_{\ell}^q|, |\xi_{\ell} - a|) = |a - \xi_k| \leq \rho_p$ and $D^+(\xi_{\ell}, \rho_p) \subset L_q$. For $\ell = 0$, one has $|a| = |a - 0| \leq \rho_p$ and obviously $|a^q - a| = |a| \leq \rho_p$. Let $a \in L_q$, since $|a^q - a| \leq \rho_p < 1$, one sees on one hand that $|a^{q^k} - a^{q^{k-1}}| \leq \rho_p$ and on the other hand, since $a^q = a + c$, with |c| < 1, one verifies that $(a^{q^k})_{k\geq 0}$ is a Cauchy sequence. Hence, setting $\omega(a) = \lim_{k \to +\infty} a^{q^k}$, one has $\omega(a)^q = \omega(a)$ and $|\omega(a) - a| \leq \rho_p$. If $\omega(a) = 0$, then a belongs to $D^+(0, \rho_p)$. Otherwise, one has $\omega(a) \neq 0$ and $\omega(a)$ is a (q-1)-th root of unity and equal to one of the ξ_{ℓ} , then $|a - \xi_{\ell}| \leq \rho_p$, that is a belongs to $D^+(\xi_{\ell}, \rho_p)$.

It is readily seen that two distinct discs $D^+(\xi_{\ell}, \rho_p)$ has an empty intersection.

N.B.

$$-\&-$$
 Let us set $L_q^- = \{a \in \mathbb{C}_p \ / \ |a^q - a| < 1\}$. Then as above $L_q^- = \bigsqcup_{0 \le \ell \le q-1} D^-(\xi_\ell, 1)$.

The proof is as that of Remark 10

-&&- The sets L_q and L_q^- are described in [9] for the case where q = p and called lemniscate. In fact they are special case of the lemniscates that can be attached to any monic polynomial with coefficients in an ultrametric valued field as defined in [1] -Proposition 4.8.1.

Proposition 11 Let $w_0 = 0, w_1, \dots, w_{q-1}$ be the fixed points of T_q , i.e. the ν -periodic points of T_p .

Then, for $0 \leq \ell \leq q-1$ and for $a \in D^+(\xi_\ell, \rho_p)$, one has $\varphi_1(a) = w_\ell$.

Proof

Let $a \in D^+(\xi_{\ell}, \rho_p)$, we have seen above that $|a^q - a| \leq \rho_p$ and that $(a^{q^k})_{k\geq 0}$ is a Cauchy sequence.

On the other hand, the polynomials T_{q^k} are such that $T_{q^k}(x) = x^{q^k} + pr_{q^k}(x)$, the coefficients of the polynomial $r_{q^k}(x)$ being integer numbers. Hence for $a \in D^+(\xi_\ell, \rho_p)$, one has $|T_{q^k}(a) - a^{q^k}| \le |p| < \rho_p$ and $|\lim_{k \to +\infty} T_{q^k}(a) - \lim_{k \to +\infty} a^{q^k}| = |\varphi_1(a) - \omega(a)| = |\varphi_1(a) - \xi_\ell| \le \rho_p$. As w_ℓ is the only fixed point of T_q with this property, one has $\varphi_1(a) = w_\ell$. \Box

Remark 12 Let T_n be the n-th Chebyshev polynomial of the first kind, $n \ge 1$ If p > 2 and $a \in \mathbb{C}_p$ is such that |a| > 1, then $\lim_{k \to +\infty} |T_{n^k}(a)| = +\infty$.

Proof Indeed since $T_{n^k}(x) = 2^{n^k - 1} x^{n^k} + \sum_{j=0}^{n^k - 1} a_{n^k,j} x^j$, with $a_{n^k,j} \in \mathbb{Z}$, for |a| > 1, one has $|a_{n^k,j}| \cdot \frac{|a^j|}{|2^{n^k - 1}|a^{n^k}|} \le \frac{|a^j|}{|a^{n^k}|} < 1$, for $0 \le j \le n^k - 1$.

Hence
$$|T_{n^k}(a)| = |2^{n^k-1}||a^{n^k}| \cdot \left|1 + \sum_{j=0}^{n^k-1} a_{n^k,j} \frac{a^j}{2^{n^k-1}a^{n^k}}\right| = |a|^{n^k} \longrightarrow +\infty, \text{ when } k \longrightarrow +\infty.$$

Let us remind that by definition the basin of attraction of an attractive fixed point x_0 for a dynamical system associated to a function f on a topological set X is the subset $Att(x_0, f) = \{y \in X \mid \lim_{k \to +\infty} f^{\circ k}(y) = x_0\}.$

Since $T'_q = qU_{q-1}$, for the fixed points w_ℓ of T_q , one has $|T'_q(w_\ell)| = |q||U_{q-1}(w_\ell)| \le |q| < 1$ and w_ℓ is an attractive fixed point of T_q .

Theorem 13 With the same notations as above, one has $Att(w_{\ell}, T_q) = D^{-}(\xi_{\ell}, 1)$.

Proof $-\bullet -$ Let $a \in D^{-}(\xi_{\ell}, 1)$, that is $|a - \xi_{\ell}| < 1$. Since $\xi_{\ell}^{q} = \xi$, one has $a^{q} - \xi_{\ell} = a^{q} - \xi_{\ell}^{q} = (a - \xi) \sum_{j=0}^{q-1} a^{q-1-j} \xi_{\ell} \Longrightarrow |a^{q} - \xi_{\ell} \le |a - \xi_{\ell}| < 1$ and $|a^{q} - a| < 1$. Since $a^{q} = \xi_{\ell} + c$, with |c| < 1, one sees that $a^{q^{k}} = \xi_{\ell} + c_{k}$, with $\lim_{k \to +\infty} c_{k} = 0$, hence $\lim_{k \to +\infty} a^{q^{k}} = \xi_{\ell}$. and he sequence $(a^{q^{k}})_{k\geq 0}$ is

a Cauchy sequence. Therefore there exists k_0 such that $\forall k \ge k_0$, one has $|a^{q^{k+1}} - a^{q^k}| < \rho_p$. It follows that $a^{q^{k_0}}$ belongs to L_q and also $a^{q^{k_0}} \in D^+(\xi_\ell, \rho_p)$. According to Proposition 11, one has $\lim_{k \to +\infty} T_{q^\ell}(a^{q^{k_0}}) = w_\ell$.

However, $T_{q^{k_0+k}}(a) = T_{q^k}(T_{q^{k_0}}(a))$ and $T_{q_0^k}(a) = a^{q^{k_0}} + pr_{k_0}(a^{q_0^k})$, with $r_{k_0} \in \mathbb{Z}_p[x)$.

 $\begin{array}{l} \text{Applying again the p-adic mean value theorem, one has } |T_{q^{k_0+k}}(a) - T_{q^k}(a^{q^{k_0}})| = \\ = |T_{q^k}(a^{q^{k_0}} + pr_{k_0}(a^{q^k_0})) - T_{q^k}(a^{q^{k_0}})| \leq ||T'_{q^k}|||p| \leq |p||q|^k.\\ \text{It follows that } \lim_{k \to +\infty} T_{q^k}(a) = \lim_{k \to +\infty} T_{q^{k_0+k}}(a) = \lim_{k \to +\infty} T_{q^k}(T_{q^{k_0}}(a)) = w_\ell \text{ and } a \in Att(w_\ell, T_q).\\ \text{Therefore } D^-(\xi_\ell, 1) \subseteq Att(w_\ell, T_q). \end{array}$

 $-\bullet$ - Let $a \in Att(w_{\ell}, T_q)$. By definition $\lim_{k \to \infty} T_q^{\circ k}(a) = w_{\ell}$. Reminding that $T_q^{\circ k} = T_{q^k}$, according to Remark 12, one must have $|a| \leq 1$.

There exists k_0 such that $|T_{q^k}(a) - w_\ell| \leq \rho_p$, $\forall k \geq k_0$. As above $|T_{q^k}(a) - a^{q^k}| \leq |p|$. Since $|w_\ell - \xi_\ell| \leq |p|$, one obtains $|\xi_\ell - a^{q^k}| = |w_\ell - T_{q^k}(a) + T_{q^k}(a) - w_\ell + w_\ell - \xi_\ell| \leq \max(|w_\ell - T_{q^k}(a)|, |T_{q^k}(a) - w_\ell|, |w_\ell - \xi_\ell|) \leq \rho_p < 1$. However $\xi_\ell^q = \xi_\ell \Longrightarrow \xi_\ell^{q^k} = \xi_\ell$. Hence in the residue field $\widetilde{\mathbb{F}}_p$ of \mathbb{C}_p , one has $0 = \overline{a}^{q^k} - \overline{\xi}^{q^k} = (\overline{a} - \overline{\xi}_\ell)^{q^k} \Longrightarrow \overline{a} = \overline{\xi}_\ell$, that is $|a - \xi_\ell| < 1 \Longrightarrow Att(w_\ell, T_q) \subseteq D^-(\xi_\ell, 1)$.

In conclusion $Att(w_{\ell}, T_q) = D^-(\xi_{\ell}, 1).$

Corollary 14 Let $Att_q(w_\ell, T_q)$ be the set of attracting points off w_ℓ contained in the unramified field \mathbb{E}_q . Then $Att_q(w_\ell, T_q) = D_q^+(\xi_\ell, |p|)$. **Proof** It suffices to notice that the unramified field \mathbb{E}_q is of discrete valuation and that if $a \in \mathbb{E}_q$ is such that |a| < 1, then $|a| \leq |p|$. \Box .

Remark

Let p be a prime number $\neq 2$. What we have done above is the determination of all the periodic points of the p-th Chebyshev polynomial of the first kind T_p . Since $T_p^{\nu} = T_{p^{\nu}}$ the p^{ν} -th Chebyshev polynomial of the first kind, for any periodic w, taken ν such that $T_p^{\rho\nu}(w) = w$, one has that w is a fixed point $T_{p^{\nu}}$ and if not equal 0, is congruent modulo the maximal ideal of the valuation ring of \mathbb{C}_p to a $p^{\nu} - 1$ -th root of unity.

Summarizing, one sees that the periodic points of T_p are in a bijective correspondence with the residue field $\widetilde{\mathbb{F}}_p$ of \mathbb{C}_p .

4 The *p*-adic dynamic of $T_n, (n, p) = 1, p \ge 3$

Let us remind that if p is a prime number, then for any integer $m \ge 1$ and x_0 a fixed point of T_m , one has $|T_m(x_0)| = |m|$ if $x_0 \ne 1$ and $|T_m(1)| = |m|^2$, when $x_0 = 1$. If follows that if p does not divide m, then $|T_m(x_0)| = 1$ for any fixed point x_0 of T_m . In other words any fixed point of T_m in the complex p-adic field \mathbb{C}_p is an indifferent point.

Let $f: D \longrightarrow D$ be an analytic map, where D is a disc of \mathbb{C}_p of finite or infinite radius and let w be a ν -periodic point of f, if there exists an open disc $D^-(w, r)$ such that for any real number 0 < r' < r the sphere $S(w, r') = \{x \in \mathbb{C}_p \mid |x - w| = r'\}$ is invariant by f^{ν} , one says that $D^-(w, r)$ is a Siegel disc and w a center of a Siegel disc. The union of Siegel discs with center w is called the Siegel disc and then of maximal radius at w. This is the ultrametric counterpart of the Siegel disc defined in complex analysis. (see for the complex case [2] and [4] or [5] for the ultrametric case).

Assume $p \ge 3$. Let *n* be a positive integer ≥ 2 , such that *n* and *p* are coprime. Hence for any other integer $\nu \ge 1$ one has $(n^{\nu}, p) = 1$. Since $T_{n^{\nu}}^{\circ \nu} = T_{n^{\nu}}$, the ν -periodic points are the fixed points w of $T_{n^{\nu}}$ that we know be of the form $w = \frac{\xi + \xi^{-1}}{2}$, where ξ is a $(n^{\nu} - 1)$ -th root of unity or of the form $w = \frac{\eta + \eta^{-1}}{2}$, where η is a $(n^{\nu} + 1)$ -th root of unity.

Hence if w is a ν -periodic point of T_n in \mathbb{C}_p , one has $|w| \leq 1$. Moreover, if $\xi^2 + 1 \neq 0 \pmod{\mathcal{M}_p}$, (resp. $\eta^2 + 1 \neq 0 \pmod{\mathcal{M}_p}$), where \mathcal{M}_p is the maximal ideal of the valuation ring \mathbb{A}_p of \mathbb{C}_p , then |w| = 1. Otherwise |w| < 1 and reducing modulo \mathcal{M}_p , one has in the residue field $\mathbb{A}_p/\mathcal{M}_p = \widetilde{\mathbb{F}}_p$ that $\overline{\zeta}^2 + 1 = 0$ (resp. $\overline{\eta}^2 + 1 = 0$). Applying Hensel lemma, one sees that the root of unity is a square root of -1 in \mathbb{C}_p and then w = 0.

Let
$$T_{n^{\nu}}(x) = T_{n^{\nu}}(w) + \sum_{j=1}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!} (x-w)^j$$
 be the Taylor expansion near w , where $T_{n^{\nu}}^{(j)}$ is the the derivative of $T_{n^{\nu}}$.

However, $T_{n^{\nu}}(x) = \sum_{k=0}^{\left[\frac{n^{\nu}}{2}\right]} (-1)^k 2^{n^{\nu}-2k-1} \frac{n^{\nu}}{n^{\nu}-k} {n^{\nu}-k \choose k} x^{n^{\nu}-2k}.$ It is then readily seen that for $0 \le j \le n$, one has

$$\frac{T_{n^{\nu}}^{(j)}(x)}{j!} = \sum_{k=0}^{\left[\frac{n^{\nu}}{2}\right]} (-1)^{k} 2^{n^{\nu}-2k-1} \binom{n^{\nu}-2k}{j} \frac{n^{\nu}}{n^{\nu}-k} \binom{n^{\nu}-k}{k} x^{n^{\nu}-2k-j} = \sum_{k=0}^{\left[\frac{n^{\nu}-j}{2}\right]} (-1)^{k} 2^{n^{\nu}-2k-1} \frac{n^{\nu}}{n^{\nu}-k} \binom{n^{\nu}-2k}{j} \binom{n^{\nu}-k}{k} x^{n^{\nu}-2k-j}.$$

The coefficients of the polynomials $\frac{T_{n^{\nu}}^{(J)}(x)}{j!}$ are integer numbers. Hence, since $|w| \leq 1$,one sees that

$$\begin{aligned} \left| \frac{T_{n^{\nu}}^{(j)}(w)}{j!} \right| &= \left| \sum_{k=0}^{\left[\frac{n^{\nu}-j}{2}\right]} (-1)^{k} 2^{n^{\nu}-2k-1} \frac{n^{\nu}}{n^{\nu}-k} \binom{n^{\nu}-2k}{j} \binom{n^{\nu}-k}{k} w^{n^{\nu}-2k-j} \right| \le \\ &\leq \max_{0 \le k \le \left[\frac{n^{\nu}-j}{2}\right]} |w|^{n^{\nu}-2k-j} \le 1. \end{aligned}$$

Proposition 15 Let p be a prime number different from 2 and n be an integer ≥ 2 such that p does not divide n.

Then any periodic point w of T_n is an indifferent point, with absolute value ≤ 1 and the Siegel disc around w is the disc $D^-(w, 1)$.

Proof

Let
$$w$$
 be a periodic point of T_n of periodic ν . Then $T_{n^{\nu}}(w) = w$ and $T_{n^{\nu}}(x) - w =$

$$= T_{n^{\nu}}(x) - T_{n^{\nu}}(w) = \sum_{j=1}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!} (x - w)^j = (x - w) \sum_{j=1}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!} (x - w)^{j-1} =$$

$$= (x - w) \left(T_{n^{\nu}}(w) + \sum_{j=2}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!} (x - w)^{j-1} \right).$$
But $\left| \sum_{j=2}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!} (x - w)^{j-1} \right| \le \max_{2\le j\le n^{\nu}} \left| \frac{T_{n^{\nu}}^{(j)}(w)}{j!} \right| |x - w|^{j-1} \le \max_{2\le j\le n^{\nu}} |x - w|^{j-1}.$
Then if $|x - w| < 1$, one has $\left| \sum_{j=1}^{n^{\nu}} \frac{T_{n^{\nu}}^{(j)}(w)}{j!} (x - w)^{j-1} \right| \le \max_{2\le j\le n^{\nu}} |x - w|^{j-1} < 1.$

Since $|T'_{n^{\nu}}(w)| = 1$, for |x - w| < 1, one obtains $|T_{n^{\nu}}(x - w)^{j-1}| \le \max_{2 \le j \le n^{\nu}} |x - w|^{j-1}$.

Let 0 < r' < r < 1 be two real numbers, elements of $|\mathbb{C}_p| \setminus \{0\}$.

If |x - w| = r', then $|T_{n^{\nu}}(x) - w| = |x - w| = r'$, it follows that the sphere S(w, r') is invariant by $T_{n^{\nu}}$.

This shows that $D^{-}(w, 1)$ is the Siegel disc around w.

N.B. If the integer numbers n and ν are such that $n^{\nu} - 1 = p^{\mu}$ a power of p, then if ζ is a primitive $n^{\nu} - 1$ -th root of unity the field $\mathbb{Q}_p[\zeta]$ is a totally ramified extension of \mathbb{Q}_p . It follows that this field has the same residue field \mathbb{F}_p as \mathbb{Q}_p . If $n^{\nu} - 1 = p^k$, $k \ge 2$ there are distinct ν -periodic points of T_n in $\left\{\frac{\xi + \xi^{-1}}{2} \neq 0, \xi^{n^{\nu} - 1} = 1\right\}$ whose residue classes are equal in \mathbb{F}_p .

Scholie

 $-\dagger$ Above we have supposed that the prime number p is different from 2 without giving any explanation. But let us consider the expansion of the Chebyshev polynomials:

$$T_{2m}(x) = \sum_{k=0}^{m} (-1)^k 2^{2(m-k)-1} \frac{2m}{2m-k} \binom{2m-k}{k} x^{2(m-k)} =$$

= $2^{2m-1} x^{2m} + \sum_{k=1}^{m-1} (-1)^k \sum_{k=0}^{m} (-1)^k 2^{2(m-k)-1} \frac{2m}{2m-k} \binom{2m-k}{k} x^{2(m-k)} + (-1)^m.$

It follows that in the polynomial ring $\mathbb{Z}|x|$, one has the congruence

$$T_{2m}(x) \equiv 1 \pmod{2\mathbb{Z}[x]}$$

Also $T_{2m+1} = 2^{2m}x^{2m+1} + \sum_{k=1}^{m-1} (-1)^k \sum_{k=0}^m (-1)^k 2^{2(m-k)} \frac{2m+1}{2m-k+1} \binom{2m-k+1}{k} x^{2(m-k)+1} + (-1)^m (2m+1)x.$ Therefore

 $T_{2m+1}(x) \equiv x \pmod{2\mathbb{Z}[x]}$

Hence the method used to locate periodic points of the polynomial T_p cannot be applied when p = 2.

Nevertheless if w in a fixed point of the Chebyshev polynomial T_n , one has in the field of 2adic complex numbers \mathbb{C}_2 that $|T'_n(w)|_2 = |n|_2$ if $w \neq 1$ and $|T'_n(1)|_2 = |n^2|_2$. Then if n is even $|T'_n(w)| < 1$ and any fixed point w of T_n is an attractive point in \mathbb{C}_2 . On the other hand, if n is odd, one has $|T'_n(w)| = 1$ and the fixed point w of T_n is indifferent. By the same way, any periodic point of T_n is an attractive point if n is even and an indifferent point if n is odd.

The fixed points of the second Chebyshev polynomial $T_2(x) = 2x^2 - 1$ are 1 and $-\frac{1}{2}$. Hence in contrast with the cas $p \neq 2$, one has $\left| -\frac{1}{2} \right|_2 = 2 > 1$. However for any positive integer $\nu \geq 1$, the ν -periodic points in \mathbb{C}_2 lie in the ν -dimensional unramified extension $\mathbb{E}_{2^{\nu}}$ of \mathbb{Q}_2 . Indeed one can apply Lemma 8 and the Nota Bene before it to prove that, since $T_2^{\circ\nu} = T_{2^{\nu}}$, the ν -periodic points are of the form $w = \frac{\xi + \xi^{-1}}{2}$ where ξ is a $(2^{\nu} - 1)$ -th

root of unity or $w = \frac{\eta + \eta^{-1}}{2}$ where η is a $(2^{\nu} + 1)$ -th root of unity. For $\nu = 2$, since $2^2 - 1 = 3$ the 3-th roots of unity (cubic roots of unity) in \mathbb{C}_2 are 1 and the roots of the polynomial $x^2 + x + 1$ that we write in the forms $j = -\frac{1}{2} + \frac{\sqrt{-3}}{2}$ and $j^2 = -\frac{1}{2} + \frac{\sqrt{-3}}{2}$. The corresponding unramified field extension of dimension 2 over \mathbb{Q}_2 is $\mathbb{E}_4 = \mathbb{Q}_2[j] = \mathbb{Q}_2[\sqrt{-3}]$. For $2^2 + 1 = 5$ the 5-th roots of unity are 1 and the roots of the polynomial $x^4 + x^3 + x^2 + x + 1$.

A classical procedure of the resolution of this quartic equation by setting $u = x + \frac{1}{x}$ yields to the auxillary equation $u^2 + u - 1 = 0$ which has two solutions $u_{\pm} = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}$. Notice that since $5 \equiv -3 \pmod{8}$, one has $\sqrt{5} = \delta \sqrt{-3} \in \mathbb{E}_4$, with δ the square root of $1 - 3^{-1} \overline{8}$ which belongs to \mathbb{Q}_2 and $\mathbb{E}_4 = \mathbb{Q}_2[\sqrt{5}]$. Moreover $x^2 - u_{\pm}x + 1 = 0 \implies 2x^2 + (1 + \sqrt{5})x + 2 = 0$, or $2x^2 + (1 - \sqrt{5})x + 2 = 0$.

Then $\left(x + \frac{1+\sqrt{5}}{4}\right)^2 = \frac{2\sqrt{5}-10}{16}$ or $\left(x + \frac{1-\sqrt{5}}{4}\right)^2 = \frac{2\sqrt{5}-10}{16}$, with $\frac{2\sqrt{5}-10}{16} \in \mathbb{E}_4$. Let us denote by $\theta \in \mathbb{C}_2$ a root of the polynomial $X^2 - (2\sqrt{5}-10) \in \mathbb{E}_4[X]$, one obtains the 5-th roots of unity in the form $\eta_1 = -\frac{1+\sqrt{5}}{4} + \frac{\theta}{4}$, $\eta_2 = -\frac{1+\sqrt{5}}{4} - \frac{\theta}{4}$, with $\eta_1^{-1} = \eta_2$ and $\eta_3 = \frac{\sqrt{5}-1}{4} + \frac{\theta}{4}$, $\eta_4 = \frac{\sqrt{5}-1}{4} - \frac{\theta}{4}$, with $\eta_3^{-1} = \eta_4$. From these 5-th roots of unity in \mathbb{C}_2 , one obtains the 2-periodic points $w_3 = -\frac{1+\sqrt{5}}{4}$ and $w_4 = \frac{\sqrt{5}-1}{4}$ that belongs to \mathbb{E}_4 . The other 2-periodic points of T_2 are the fixed points 1 and $-\frac{1}{2}$. The 2-periodic points w_3 and w_4 are conjugated in the quadratic extension \mathbb{E}_4 of \mathbb{Q}_2 , with norm $w_3w_4 = -\frac{1}{4}$ wich implies that $|w_3| = |w_4| = \left|-\frac{1}{4}\right|_2^{\frac{1}{2}} = 2$. The period of w_3 and w_4 is 2.

More generally, one can prove that for any integer $\nu \ge 1$, if w is a ν -periodic point in \mathbb{C}_2 different from 1, then $|w|_2 = 2$.

 $-\dagger\dagger-$ One immediately verifies that if the prime p is different from 2, then since the leading coefficient of the Chebyshev polynomial T_n , $n \ge 2$, is equal to 2^{n-1} , then the leading coefficient of the reduced polynomial modulo p is the class of 2^{n-1} that is different from 0. Hence the polynomial $T_n, n \ge 2$, has good reduction modulo p and one deduces from a well known theorem of Morton and Silverman ([6]) that the *p*-adic Julia set of T_n is the empty set.

The congruences modulo 2 for the Chebyshev polynomials $T_n, n \ge 2$ quoted above show that these polynomials have bad reduction modulo 2. However, one can prove directly that the *p*-adic Julia set of any polynomial Chebyshev T_n of degree $n \ge 2$, is the *empty set, regardless the prime number* p is 2 or odd.

References

- [1] Y. Amice, Les nombres p-adiques, PUF, Paris 1975.
- [2] A. F. Beardon, *Iteration of rational functions*, Springer, GTM 132, New York, Berlin, Heidelberg, 2000.
- [3] F. Q. Gouvea, *p-adic Numbers, An introduction*, Universitext, Springer, Berlin 1997
- [4] A. Yu. Khrennikov, Non-archimedan analysis: quantum paradoxes, dyamical systems and biological models, Kluwer Academic Publishers, Dordrecht, 1997.
- [5] A. Yu. Khrennikov and M. Nilson, p-Adic deterministic and random dynamics, Kluwer Academic Publishers, Dordrecht, 2004.
- [6] P. Morton and J. Silverman, Periodic points, multiplicities and dynamical units, J. Reine Angew. Math. 461 (1995), no.2,183-208.
- [7] A. M. Robert, Le théorème des accroissements finis p-adique, Annales Mathématiques Blaise Pascal, vol. 2, N°1, 1995.

- [8] A. M. Robert, A course in p-adic analysis, Springer-Verlag, New York-Heidelberg-Berlin, 2000.
- [9] M. Zuber, Propriétés p-adiques des polynômes classiques, Thèse, Université de Neuchatel, (Suisse), 03 décembre 1992.

Laboratoire de Mathématiques, UMR 6620 CNRS - Université Blaise Pascal Complexe Scientifique des Cézeaux 63 177 Aubière Cedex - France *e-mail : Bertin.Diarra@math.univ-bpclermont.fr*