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Abstract

We study the behaviour of the iterates of the Chebyshev polynomials of the first kind in
p-adic fields. In particular, we determine in the field of complex p-adic numbers for p > 2,
the periodic points of the p-th Chebyshev polynomial of the first kind. These periodic points
are attractive points. We describe their basin of attraction. The classification of finite fields
extensions of the field of p-adic numbers Q,, enables one to locate precisely, for any integer
v > 1, the v-periodic points of Tj: they are simple and the nonzero ones lie in the unit circle
of the unramified extension of Qp, (p > 2) of degree v. This generalizes a result, stated by M.
Zuber in his PhD thesis, giving the fixed points of T}, in the field Qp, (p > 2).

1  Classical formulas for Chebyshev polynomials

Let i = v/—1 and Q[i] the quadratic field over the tfield of the rational numbers. Let Q[i][[6]]
(resp.Q[é]((#)) be the algebra (resp. the field) of formal power series (resp. formal Laurent series)
with indeterminate ¢ and coefficients in Q[i].

Let us consider the following formal trigonometric series, elements of Q[é][[0]] :
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One has exp(if) = cos(f) + isin(f). In the algebra of formal power series in two variables
Q[é][[0, €], from the fact that exp(i(6 + 6')) = exp(if) + exp(if’) one deduces the usual addition
and substraction formulas for the formal trigonometric series, cos(6)? + sin(6)? = 1, etc...

There exists a sequence of polynomials (T},),>0 such that T,,(cosf) = cos(nf). The polynomial
T, is called the n-th Chebyshev polynomial of the first kind.



If m and n are positive integers one has T,,, (T}, (cos(0))) = Tr,(cos(nf)) = cos(mnb) = Tpnn(cos(6)).
On the other hand since cos((n + 1)) = cos(nf) cos(d) — sin(nf)sin(f) and cos((n — 1)§) =
cos(nd) cos(0) + sin(nd) sin(0), one sees that T),41(cos(0)) + T,—1(cos(9)) = T1(cos(8)) T, (cos(6)).
As a consequence, one has

Lemma 1 The sequence of Chebyshev polynomials of the first kind satisfies the following properties:
—(1)—- To=1Ti(z)=2x
—(2) = Thy1(z) = 22T, (x) — Troi(x), Yn >1
—8)— TymoT,=Tnn=T,oTy,

A consequence of the property (3) is that the sequence (T},)n>0 is a commutative monoid with
respect to the operation of composition, the identity element being T} = 2 and T = T,,x, Vn, k.

Corollary 2 The polynomial Ty, is of degree n, whose ceefficients are integers with its leading
ceefficent equal to 271

d
Differentiating the relation T}, (cosf) = cos(nf), one obtains @TH(COS(Q)) = —sin(0)T} (cos(9)) =
sin(né)
sin(6) -
The sequence of Chebyshev polynomials of the second kind is the sequence of polynomials U,, such

that U, (cos(0)) = W

that U, (cos(#)) + U,—2(cos(8)) = 2 cos(0)Up—1(cos(8)).

—nsin(nf). Then T} (cosf)) =n

. Since sin((n 4+ 1)8) + sin((n — 1)8) = 2cos(0) sin(nh), one sees

Lemma 3 The sequence of Chebyshev polynomials of the second kind satisfies the following prop-
erties:

—(1)— UOZLUl(SC) = 2x.

—(2) = Upyi(x) =22U,(z) — Up—1(x), Yn > 1. The degree of U, is equal to n.

~(3)~  Ti() = nUp-1(2).

Let us do the change of variable by putting exp(if) = y. Then formally, the TChebyshev
-1
polynomials of first and second kinds are also given by substitution of the fraction % :

-1 n -n
T <y+y >_y +y

2 2

U <y+y1) B yn+1 _yfnfl
n - -1
2 y—y

One consequence is that for any integer n > 0, one has:

To(—z) = (-1)"T,,(z) and U,(—z) = (—1)"U,(x).



y+y!

Let us do another change of variable = x, that is y2 + 1 = 22y <= (y — 2)? =

—(1 — 2?) = i%(1 — 2%). The square roots of (1 — z?) exist in the ring of formal power series

Q[é][[x]], with one taken to be V1 — 2 = Z ( > 2t Therefore y = x + iy/1 — 22. Putting

£>0

y=2x+1/1—22 onehas y~! =z —iv1— 22 and
1 n
7<x—|—i\/1—x2) +

T.(z) = 5

(I—i\/l —xQ)n

1
2

Since (z +iv1 —22)" = Zn: <”>zmx” m(1—2? Z zn: (”) L e e L

m=0 mn 2m<n m=0 2m

; n _q{\ym,n—2m—1q _  2\2m+l
ZZ <m>( ™z (1—2z%)"2z and

2m+1<n

—q — 2\ _ n _1\ym,n—2m/ _ .2\m
(e—ivi—a?) = ¥ <2m)( Ly )

2m<n

—i Z (anJr 1) (=1)™z" =211 — %)™ | one obtains

2m+1<n

T.(z) = Z <2771n> (—1)mz" "2 (1 — )™,

2m<n

On the other hand (1 — z?)™ = Z (m) (1)
k+4=m

k+¢
Then T, (x) = Z (% i 2€> (_1)k+2é( ;‘ )mn—zk—uxzz _
2k+20<n
_l’_
k

=S )Y <2ki2€> (k g)ﬂl—?k. That is

2k<n 2{<n

(3] [
n k+20\ ,_
Ta@) = 2 (1) (2k + 2£> ( k )x .

By differentiating the relation sin(6)T}.(cos(f)) = nsin(nf), one obtains
cos(0)T" (cos(0)) — sin(0)?T" (cos(0)) = n%cos(nh). Hence T;, satisfies the differential equation

w3

(1 — 2T/ (z) — 2T (x) + n?*Tp(x) =0

Hence, setting T, ( Z A, " 2k , one sees that

(n — 2k + 2)(n — 2k + 1)an k—1+4k(n — k)an = 0.

-k
And by telescoping, one obtains a, ; = (71)’“2”*2’“*1% (n k > Therefore
n—



n
An obvious consequence is that for any k < [5}, one has the combinatorics equality

n m+k _ on—2k—1_"N n—k
2m + 2k m N n—k\ k )

nU,—_1(x), one has

(3]

w3

m=0

Since T) (x)

(5]

1 —
Up1(z) = =) (=1)k2n=2k=1(p — 2k)L (n k) 2"~ %=1 which turns to be
ni— n—k\ k
(5]
Un_i(z) = (1)k2n2k1<n k2k>xn2k1_ And
k=0
-y 2k+1
U ((E) _ (_1)k2n72k <TL - + )ank
n k .
k=0

2 Fixed points of the Chebyshev polynomial 7T,

Let K be an algebraically closed field of characteristic 0.
An element z € K is called a fixed point of T, if T,,(z) = x. For Ty = 1, the only fixed point is 1
and for T} = x, any element of K is a fixed ploint. Hence in the sequellwe assume that n > 2.
z n T Z
— an +1= yn-i-l _ yn—l — (yn—l _ 1)(yn+1 _ 1) | yn—l =1or yn-‘rl =1.
Hence y = ¢ is a (n — 1)-th root of unity or y = n is a (n + 1)-th root of unity, and
S SN b

2 2

Let us notice that 1 = % =2y =1y’ +1+= (y— 1?2 =0+<«= y = 1. It follows that
T,(1) =1, that is 1 is a fixed point of T,.

Let us notice that this induces the following combinatorics equalities :

(3] (3] (3]
—k n k+7¢
1 k2n—2k—1L n -1 _1)k .
’;( ) n—=k k (=1) 2k + 2/ k

k=0 £=0

If x # 1 is a fixed point of T;,, we notice above that:



C+(¢t

—ft— x= 5 with ¢ #1 a (n — 1)-th root of unity.
n __ F—n _ -1
Then T/ (x) = nU,_1(x) = nCC — 5*1 = ng — 271 =n.
n+n!
—it— Orz= 5 with n # 1 a (n + 1)-th root of unity.
n _ =N -1 _
Then T (z) = nUp—1(x) = nL 7771 =n2 7717 = —n.
n—"n n—"n
n—1
+ —1 n __ ,,—n o
it Onetas U,y (L) = L E Sy,
3=0

n—1
It follows that U,_1(1) = Y 1 =n and Tj,(1) = nU,_1(1) = n?.
j=0

One deduces from the above that the fixed points of T;,,n > 2 are simple.
Furthermore, one has the combinatorics equalities :

[
(—1)kgn—2k-1 <” —k;%) —

w3

]

k=0

N.B.

Let n be a positive integer > 2 and v a positive integer > 1. For the n-th Chebyshev polynomial
of the first kind 7;,, one has T.¥ = T),». Hence the v-periodic points of T}, are the fixed points of
the polynomial T, .

Proposition 4 The fixed points of the n-th Chebyshev polynomial of the first kind T,,,n > 2 in the

2k -1 20
field of complex numbers C, are the real numbers cos (Wl) ,0< kL n 5 and cos (ﬂ) ,0<
n

gt

5
They are repelling fixed points.

Proof o
Indeed for any positive integer n > 2, the (n—1)-th roots of unity in C are ¢, = exp ( ml) ,0<
n—
-1
k < mn— 1. The fixed points of T,, associated to these (n — 1)-th roots of unity are z; = QC—FTC’“ =

Cos(2lm>,0§k‘§n_1.
1 2

n —

-1
1
The other fixed points y, of T}, are the real parts y, = WJFTW, 0<e< nt

2Umi 20 n+1
. Th = — 1,0<¢< .
n+1) en yy COS(nJrl)’ St<—
For the fixed points x # 1, one has T, (x) = nU,—1(zx) = n. Then |T) (zx)| =n > 1. In the
same way for the fixed points y, # 1, one has T}, (y¢) = nUn—1(ye) = —n. Then |T} (ye)| = n > 1.

of the (n + 1)-th

roots of unity 7, = exp (



On the other hand for the fixed point 1, one has T7,(1) = nU,_1(1) = n?. Then |T},(1)| = n? > 1.
Hence one concludes that any fixed point x of T}, in the complex number field C is a real number
such that |z| <1 and is a repelling point.

In contrast, in the field of complex p-adic numbers C, the fixed points cannot be repelling points.

Proposition 5 For n a positive integer > 2, the fived points x of T;, in the complex p-adic field
C, are :

—(1)— indifferrent fized points if p does not divide n

—(2)— attractive fized points if p divides n.

Proof

Let us remind that if 2 # 1 is a fixed point, then T} (x) = £n and for the fixed point 1,7, (1) =
n?. Then if p [n, one has for z a fixed point, one has |T/,(x)| = 1 and z is an indifferent fixed point.
If p|n, then for z a fixed point |T),(x)| < 1 and z is an attractive fixed point.

3  The p-adic dynamic of 7),, p > 2

In this section we consider a prime number p > 2. Let v be an integer > 1 and let us set ¢ = p”.
According to the previous N.B., for the p-th Chebyshev polynomial of the first kind and for any
positive integer r, one has

T,°" = Tpr. In particular T, = T,,°” and the v-periodic points of T), are the fized points of Ty,.

Lemma 6 One has in the ring of polynomials Z,|x], the congruence Ty(x) = x?(mod pZy[z)).

Proof

(2]
—k
One has Ty(z) = 24-1gpa 1 kz_l(_l)kT]_%_lqzk; (q . >xq_2’“,

For 1 < k < [2] < ¢, one has v,(k) < vy(q) = v, where v, is the p-adic valuation, hence

= ) = min(up(),0,0) = (k) nd vy () = 0(0) = wla = B = v = ) >

0. Since the binomial ceefficients (q f > are integers and |[(—1)¥2972¥=1] = 1, one sees that
< ‘q

—k
-1 k2q72k71 q q
=1 q—k< k q—k

From little Fermat theorem, one deduces that 297 = 1(mod p).
One then obtains the congruence of the Lemma. [

= ‘p|"*”p(k) < 1.

Let E, be the unique unramified field extension of @, of degree v. Its residue field is the finite
field F, of ¢ elements; the dimension [F, : F,] of the extension F,|F, is equal v. The field E, is
generated over Q, by a (¢ — 1)-th primitive root of unity £ (see for instance [3]) and E, contains the



group of (¢ — 1)-th roots of unity which in fact are the Teichmiiller representative of the nonzero
elements of [Fy.

Since the extension E,;|Q, is unramified, its group of valuation is equal to those of Q. Let
Ay ={x € E; / |z| < 1} be the valuation ring of E, The maximal ideal A, is equal to pA,, that is
p is an uniformizer of E,.

Proposition 7 Let p be a prime number > 2 and q = p”,v > 1.

Let & = 0 and (§r)1<e<q—1 be the finite sequence of the (q — 1)-th roots of unity ordered in such
a way that the p — 1 first are the (p — 1)-th roots of unity with & = £(mod p),1 <L <p-—1
Any fized point of of the g-th Chebyshev polynomial belong to Ay. They can be ordered in the form
0=wo, w1, - ,W, -+ ,Wq—1 such that w, = &(mod p),0 < ¢ < q—1.

Proof

Since the maximal ideal of the valuation ring A, is pA,, the congruence in Lemma 6 can be
extended in the form T,(z) = xz9(mod pAg4[z]), and one has T,(z) — z = 29 — z(mod pA4[z]). Tt
follows that T (z) — 1 = —1(mod pA,[z]). But the zeroes of the polynomial 27 — z in the residue
field A;/pA, = F, are simple and are all the elements of this finite field. Applying Hensel lemma,
one sees that the zeroes wo, w1, - ,wp, -, wg—1 of the polynomial Ty(x) — = are simple and the
set of their classes {wy,0 < £ < ¢ — 1}, modulo pA, is equal to F,. Setting wy = 0 and & the
Teichmiiller representative of W, in A,, which is a (¢ — 1)-th root of unity, one has w; = £/(mod p).
|

An immediate consequence is that the absolute value of any nonzero fized point of Ty is equal
to 1

N.B. One has another proof of Proposition 7, by using the following Lemma and the fact
£+¢7!
2

that the fixed points of T}, can be expressed, or in the form z =

n+nt

, with £ a (¢ — 1)-th root

of unity or in the form y = , with 7 a (¢ + 1)-th root of unity.

Lemma 8 Let ¢ = p¥ be a power of the prime > 2.
The unramified extension Eq2 of Q, of degree 2v contains Eq and [Eg2 : E,] = 2.
The field Eg2 is generated over Q, by the (¢ — 1)-th and (q + 1)-th roots of unity .

-1
Moreover any (q 4 1)-th root of unity n in Eg is such that ntn

belongs to E,.

We omit the proof of Lemma 8. [

Lemma 9 Let Ly={a€C, / |a] <1 and |a? —a| < \p|ﬁ} Then Ay C Ly.
Let m be a positive integer coprime to p.
For any a € Lq the sequence (T,,41(a))k>0 converges in C, and if a belongs to Ay,
then lim T,,.(a) € Aq.

k—+o00



Proof

The polynomial congruence T,(z) = z%(mod pZ,[x]), means that T,(xz) = 27 + pr,(z), with
rq(z) € Zp|z]. Hence for any ¢t € C, such that [¢| < 1, one has |r(t)| < 1 and |p||ry(2)] < [p| < |p|ﬁ
Since Ty, gr+1(t) = Tppgr © Tq(t) = Topgr (12 + prg(t)); applying the p-adic mean value theorem (cf [7]
or [8]), one sees that [T, ge+1(t) = Ty (19)] = [T gr (89 +prg(t)) = Tpgr (19)| < [pro(D)|[| T}, ¢ ||, where
1T}, x|l is the Gauss norm of the polynomial T} . = mg*U,,,+_1, and where U, ,«_ is the (mg"—1)-
th Chebyshev polynomial of the second kind U,,,x_; whose ccefficients are seen to be integer num-
bers. Then [T, [l = [mg*[[[Upqr 1]l < la* and [Ty g0t (8) — Tnge (1)) < [prg(8)lla* < Ipllgl*.

Let a € Ly, then applying again the p-adic mean value theorem, one has [T}, ,x(a?) — T, xa)| =
1 1
Tongr(a+ (a? = a)) = Trpgea)| < |a? = al||T), ol < [p| 7T Ima"| = p|7~7|g"|.

Hence for any a € L4, one obtains:
|quk‘+1 (0,) - qu’C (a)l = |quk (aq + pr(a)) - quk (aq) + quk (aq) - quk (Cb)l <
< max(‘qu’“ (aq + pr(a)) - qu’“ (aq)|’ |qu’“ (aq) - qu’“ (CL)D <

_1 _1
< max(|p|, [p|77)|q|* = |p|7=7 |q|*.

11 follows that for any element a of Ly, one has i lim |T,,4x+1(a) —=T,4x (a)| = 0 and the sequence
—400

(Tynq+(a))k>0 is a Cauchy sequence and then converges in C,,.

Since the residue field of the ring A, is the finite field Fy, any a € A, is such that

a? = a(mod pA,), then |a? —a| < |p| < |p|ﬁ, that is a belongs to L,. Since the ceefficients of the
polynomials are integer numberss, for any a € Ay, one has T, (a) € A, and i lim T,,,x(a) € Ag.
—+o00

|

Let us set ., (a) = i lim T,,.x(a), for a € Ly and m a positive integer coprime to p.
—+o0

One has ¢,,(a) = lim Ty, o Tyr(a) = Tm< lim Tk (a)) = Tm(p1(a)). On the other hand

k——+o0 k—+oco

i) =t Ty o Tys @) = T, Jim_Tyer(0)) = Ty(oala)
Then @1 (a) is a fixed point of T,.
The closed discs in C,, (resp. E,4) will be denoted by D*(a,r) (resp. D (a,r)) and the open
discs by D~ (a,r) (resp. D, (a,7)).
Let us put |p\ﬁ = pp.

Remark 10 Let {§ =0 and &1,61,- -+ ,&q—1 be the (¢ — 1)-th roots of unity.

Then D*(&,p,) C Lg. In fact Ly= | | D™ (&, pp).
0<¢<qg—1



Proof
Indeed, if a € DT (&, pp), since §] = &, for 1 < £ < g —1, one has a? —a = a? — ] +

-1
& —a=a®— & +& —a, with [a? — &| = |a — &||D e IE| < |a— &l Tt follows that
j=0
la? — a| < max(la? — ]|, & — al) = |a — &| < pp and DT (&, pp) C Lyg.
For £ =0, one has |a| = |a — 0| < p, and obviously |a? — a| = |a| < p,.

. k k—
Let a € Ly, since |a? — a| < p, < 1, one sees on one hand that |a? — a? | < pp and on the
other hand, since a? = a + ¢, with |¢| < 1, one verifies that (aqk)kzo is a Cauchy sequence. Hence,

setting w(a) = . lim a? , one has w(a)? = w(a) and |w(a) —a| < pp. If w(a) = 0, then a belongs to
—+o00

D™(0, pp). Otherwise, one has w(a) # 0 and w(a) is a (¢ — 1)-th root of unity and equal to one of

the &, then |a — &| < p,, that is a belongs to DT (&, pp).

It is readily seen that two distinct discs DF (&, pp) has an empty intersection.

N.B.

—&—  Letusset Ly ={a€C, /|a?—a| <1}. Then as above L, = |_| D™ (&,1).
0<t<qg-1

The proof is as that of Remark 10

—&&—  Thesets L, and L, are described in [9] for the case where ¢ = p and called lemniscate.

In fact they are special case of the lemniscates that can be attached to any monic polynomial with
coefficients in an ultrametric valued field as defined in [1] -Proposition 4.8.1.

Proposition 11 Let wo = 0,wy,- - ,wq—1 be the fixzed points of Ty, i.e. the v-periodic points of T),.

Then, for 0 < ¢ < gq—1 and for a € DV (&, pp), one has o1(a) = wy.

Proof

Let a € D% (&,pp), we have seen above that |a? — a| < p, and that (aqk)kzo is a Cauchy
sequence.
On the other hand, the polynomials 7} » are such that T (x) = 24" +pryx(z), the coefficients of the
polynomial 7 () being integer numbers. Hence for a € D* (&, py), one has | T, (a)—aqk\ <Ip| < pp
and | lim T (a) — lim aqk\ = |p1(a) —w(a)| = |¢1(a) — &| < pp. As wy is the only fixed point

k—4o00 k—4o00

of T, with this property, one has ¢1(a) = w,. O

Remark 12 Let T, be the n-th Chebyshev polynomial of the first kind, n > 1
If p>2 and a € C, is such that |a| > 1, then ;ghrf_l [T,k (a)] = +o0.
— 00

nk—1
Proof Indeed since Tpx(z) = gnF—1,n* 4 Z ank,jl’j, with @, ; € Z, for la| > 1, one has
§=0
@l _ || -
lanx ;| - 27 T|at] = o] <1l,for0<j<n"—1.



nF—1

k_ k aj
Hence [T (a)] = 22" ~1Ja™ - 1+ Y ape; 5

k
onF—1. nk = |6L|n — +OO, when k£ — —+00. O
a

J=0

Let us remind that by definition the basin of attraction of an attractive fixed point x for a
dynamical system associated to a function f on a topological set X is the subset Att(xo, f) = {y €

X/ lim fy) = o}

—+00

Since T, = qU, 1, for the fixed points wy of Ty, one has [T, (w¢)| = |q||Us—1(we)| < |g| < 1 and
wy is an attractive fixed point of Tj,.

Theorem 13 With the same notations as above, one has Att(we, T,) = D~ (&, 1).

Proof
—e— Let a € D™ (&,1), that is |a — &| < 1. Since &} = &, one has a? — & = a? — §] =
qg—1
(a fg)Zaqflfj& = |a? — & < |a—&| <1 and |a? —a| < 1. Since a? = & + ¢, with |¢] < 1,
3=0

one sees that a? = & + ¢, with lim ¢, =0, hence lim a? = &. and he sequence (a? )i>o is
k—+oco k—+oco -

a Cauchy sequence. Therefore there exists kg such that Vk > kg, one has \aqk+1 — aqk| < pPp-
It follows that a?™ belongs to L, and also a?” € D™ (&, pp)-

According to Proposition 11, one has . lim T (aqko) = wy.
—+0o0
However, Tyro+x(a) = Tyr (Tyr (a)) and Tox(a) = a?"” + pri, (aqf))c), with ry, € Zy[x).
Applying again the p-adic mean value theorem, one has [T xo+x(a) — Ty (a?)| =

k. k k.
=Ty (a? + priy (a®©)) = Ty (@) < [Tyl Ipl < Ipllal*-
It follows that kginoo Tyr(a) = kginoo Tyro+k(a) = kgrfoo Tyr(Tyro (a)) = wy and a € Att(wg, Ty).
Therefore D~ (&;,1) C Att(wy, T,).

— o — Let a € Att(w,,T;). By definition klim T;k(a) = wy. Reminding that T;k = Ty,
—00

according to Remark 12, one must have |a| < 1.

There exists ko such that |Tx(a) —we| < pp, Yk > ko. As above |Tyx(a) — aqk| < |p|. Since
jwe — & < |pl, one obtains |& — a?"| = [wy = Tys (a) + Tye (@) — we +we — &| <

k
< max(|wg — Tye(a)l, |Tyr(a) — we|, Jwe — &) < pp < 1. However & = & = &} = &. Hence in
~ gk ok _

the residue field F,, of C,, one has 0 = al — & =@- fe)qk = a=2¢&,thatis |[a — &§| <1 =
Att(wg,Tq) - Di(fg, 1)

In conclusion Att(we,T,) = D™ (&,1). O

Corollary 14 Let Atty(we,Ty) be the set of attracting points off we contained in the unramified
field E,.
Then Atty(we, Ty) = D;—(fg, [p|)-

10



Proof It suffices to notice that the unramified field E, is of discrete valuation and that if a € E,
is such that |a| < 1, then |a| < |p|. O.

Remark

Let p be a prime number # 2. What we have done above is the determination of all the periodic
points of the p-th Chebyshev polynomial of the first kind 7T},. Since 7" = T),» the p”-th Chebyshev
polynomial of the first kind, for any periodic w, taken v such that 7 (w) = w, one has that w is a
fixed point T,» and if not equal 0, is congruent modulo the maximal ideal of the valuation ring of
C, to a p” — 1-th root of unity.

Summarizing, one sees that the periodic points of T), are in a bijective correspondence with the
residue field I~Fp of C,.

4  The p-adic dynamic of 7;,,(n,p) =1, p >3

Let us remind that if p is a prime number, then for any integer m > 1 and g a fixed point of T},,
one has |Ty,(zo)| = |m| if zg # 1 and |T,,(1)| = |m|?, when x¢ = 1. If follows that if p does not
divide m, then |T,,(xo)| = 1 for any fixed point ¢ of T,. In other words any fixed point of T,, in
the complex p-adic field C,, is an indifferent point.

Let f: D — D be an analytic map, where D is a disc of C, of finite or infinite radius and let
w be a v-periodic point of f, if there exists an open disc D~ (w,r) such that for any real number
0 <1’ < r the sphere S(w,r") ={x € C, / |x —w| =r'} is invariant by ¥, one says that D~ (w,r)
is a Siegel disc and w a center of a Siegel disc. The union of Siegel discs with center w is called the
Siegel disc and then of maximal radius at w. This is the ultrametric counterpart of the Siegel disc
defined in complex analysis. ( see for the complex case [2] and [4] or [5] for the ultrametric case).

Assume p > 3. Let n be a positive integer > 2, such that n and p are coprime. Hence for any
other integer v > 1 one has (n”,p) = 1. Since T,?¥ = T,», the v-periodic points are the fixed points
§+¢"

2

, where 7 is a (n” 4+ 1)—th root of unity.

w of T,» that we know be of the form w =

n+nt
2

, where £ is a (n” — 1)—th root of unity or of

the form w =

Hence if w is a v-periodic point of T, in Cp, one has |w| < 1. Moreover, if £2 41 # 0(mod M,,),
(resp. 1? + 1 # 0(mod M,,), where M,, is the maximal ideal of the valuation ring A, of C,, then
|w| = 1. Otherwise |w| < 1 and reducing modulo M,, one has in the residue field A,/M, = F,
that ZQ +1 =0 (resp. 7>+ 1 = 0). Applying Hensel lemma, one sees that the root of unity is a
square root of —1 in C, and then w = 0.

n (9)
T, ; i
Let Ty (z) = The (w) + E "7|(w>(a: — w)’ be the Taylor expansion near w, where T,(L]u) is the
; !
Jj=1

j-th derivative of T,,».
(%]

v v v—k v
However, T, (z) = Z(,l)an 2k1nk<n h >:1:" -
nY —
k=

0
It is then readily seen that for 0 < j < n, one has
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Tr(ij) (z) _ (—1)kon”—2k-1 (”V - 2]‘5> n” (”” - k) R
= . P
4! — Jj nv —k k
(251
v v v —2k\ (n" —k v ,
_ -1 k2n —2k—1_ M n n 72](57].
Z:% (=1) n—k\ ko)t

79 (z)
The coeefficients of the polynomials "7' are integer numbers.
4!

Hence, since |w| < 1,0ne sees that

: [*5]
T (w) - v n’  (n¥ —=2k\ (n" —k\ ,» ,
nY — -1 k2n —2k—1 n"=2k—j|
I > (=1 w—k\ I =
k=0
< max |w[" T <1
0<k<[ 252

Proposition 15 Let p be a prime number different from 2 and n be an integer > 2 such that

p does not divide n.

Then any periodic point w of T, is an indifferent point, with absolute value < 1 and the Siegel disc
around w is the disc D~ (w, 1).

Proof

Let w be a periodic point of T,, of periodic v. Then T,,» (w) = w and Tv (z) —w =

n” ) (4 ‘ 79 (4
= nu(x)_Tnu(w):ZTan!( )(;v—w)]:(w—w)ZT"j!()(m—w)]_lz

Jj=1 Jj=1

) |
= (z —w) Tnu(w)—l—ZTnujl( )(av—w)]_1

<

n” 7 ()
v ; T . ,
But & (w) (z—w)™ < m z (w) |t —wl™' < max |z —w]’
; ! 2<j<n” ! 2<5<n”
= j
279 (w) . }
Then if |z — w| < 1, one has Z”%(xfw)rl < max |z —wP <1
= 4! 2<j<ny
Since [T}, (w)| = 1, for |z — w| < 1, one obtains |T,» (z) — w| = |z — w|.

Let 0 <7’ <7 < 1 be two real numbers, elements of |C,| \ {0}.

If |z — w| =7/, then |Tv (z) — w| = |z — w| = 7', it follows that the sphere S(w,r’) is invariant
by Th,v.

This shows that D~ (w, 1) is the Siegel disc around w.

N.B. If the integer numbers n and v are such that n” — 1 = p* a power of p, then if ¢ is a
primitive n” — 1-th root of unity the field Q,[(] is a totally ramified extension of Q,. It follows that
this field has the same residue field F,, as Q,. If n¥ — 1 = p¥, k > 2 there are distinct v-periodic

-1
points of T}, in {5 +&

5 #0, f"y_l = 1, whose residue classes are equal in [F),.
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Scholie

—f1— Above we have supposed that the prime number p is different from 2 without giving any
explanation. But let us consider the expansion of the Chebyshev polynomials:

- 2m  (2m —k
T m — -1 k22(m—k)—1 2(m—k) _
(@) = 2 (-1) am—k\ k& )°
k=0
e - 2m 2m — k 2( k)
— 92m—1,2m -1 k -1 k22(m—k)—1 m— 1™,
SEPNCDIE) 2 (2m =R qame ()

Tt follows that in the polynomial ring Z[z], one has the congruence

Tom (z) = 1(mod 2Z[x])

m—1 m

2m 41 2m —k+1
Al Tm _ 22m 2m+1 ~1 k ~1 k22(m—k:) 2(m—k)+1
50 S2matl v +;( ) ;;( ) om k41 roo )" +

(=1)™(2m + 1)x. Therefore
Tom+1(z) = z(mod 2Z[z))

Hence the method used to locate periodic points of the polynomial 7}, cannot be applied when
p=2.

Nevertheless if w in a fixed point of the Chebyshev polynomial T;,, one has in the field of 2-
adic complex numbers Cy that |T)(w)|e = |n|s if w # 1 and |T,(1)|2 = |n?|2. Then if n is even
|77 (w)] < 1 and any fixed point w of T,, is an attractive point in Cy. On the other hand, if n is
odd, one has |T) (w)| = 1 and the fixed point w of T}, is indifferent. By the same way, any periodic
point of T, is an attractive point if n is even and an indifferent point if n is odd.

1
The fixed points of the second Chebyshev polynomial T(z) = 222 — 1 are 1 and —3 Hence in

=2>1.

contrast with the cas p # 2, one has

However for any positive integer v > 1, the v-periodic points in Cs lie in the v-dimensional unram-

ified extension Ey» of Q2. Indeed one can apply Lemma 8 and the Nota Bene before it to prove
. o + &1 .
that, since 75" = Thv, the v-periodic points are of the form w = % where £ is a (2 — 1)-th

n+nt

root of unity or w = where 7 is a (2” + 1)-th root of unity.

For v = 2, since 22 — 1 = 3 the 3-th roots of unity (cubic roots of unity) in Cy are 1 and the

1 -3 1 -3
roots of the polynomial 2 + 2 + 1 that we write in the forms j = —5 + 5 and j2 = —5 + 5

The corresponding unramified field extension of dimension 2 over Qs is B4 = Q2[j] = Q2[v/—3]
For 22 41 = 5 the 5-th roots of unity are 1 and the roots of the polynomial z* 4+ 2% 4+ 2% + 2 + 1.

1
A classical procedure of the resolution of this quartic equation by setting u = x + — yields to the
T

V5

1
auxillary equation u? + u — 1 = 0 which has two solutions uy = —5 + - Notice that since

5 = —3(mod 8), one has v/5 = §/—3 € Ey4, with § the square root of 1 — 378 which belongs to Qs
and B4 = Q3[v/5]. Moreover 22 —usz+1 =0 = 222+ (1+v5)2+2 = 0, or 222+ (1—/5)z+2 = 0.
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2 2
Lrv5) 2510 or x+1_\/g _2v5-10 With72\/5—1O€]E Let us
4 16 4 T 16 v
denote by 6 € Cy a root of the polynomial X2 — (2y/5 — 10) € E4[X], one obtains the 5-th roots of

1++v5 6 1+v5 6

Then (sc +

unity in the form n; = — 1 +Z’ =" _Z’With 771_1 =19 and
5—-1 46 5-1 46
N3 = \f4 +Z’ Ny = \[4 D with 7751 = 14. From these 5-th roots of unity in Cs, one obtains
1 5 5—-1
the 2-periodic points ws = — +4\[ and wy = \[4 that belongs to E,. The other 2-periodic

points of T5 are the fixed points 1 and —3 The 2-periodic points w3 and wy are conjugated in the

1

2
= 2.
2

1 1
quadratic extension E4 of Q9, with norm wsw, = ~1 wich implies that |ws| = |wy| = ’—4

The period of w3 and wy is 2.
More generally, one can prove that for any integer v > 1, if w is a v-periodic point in C, different
from 1, then |w|y = 2.

—f1T— One immediately verifies that if the prime p is different from 2, then since the leading

coefficient of the Chebyshev polynomial T,,, n > 2, is equal to 27!, then the leading coefiicient of
the reduced polynomial modulo p is the class of 27! that is different from 0. Hence the polynomial
T,,n > 2, has good reduction modulo p and one deduces from a well known theorem of Morton
and Silverman ([6]) that the p-adic Julia set of T), is the empty set.
The congruences modulo 2 for the Chebyshev polynomials T},,n > 2 quoted above show that these
polynomials have bad reduction modulo 2. However, one can prove directly that the p-adic Julia
set of any polynomial Chebyshev T, of degree n > 2 , is the empty set, regardless the prime number
p is 2 or odd.
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