Finding the asymptotically optimal Baire distance for multi-channel data

Patrick Erik Bradley

Institute für Photogrammetrie und Fernerkundung Karlsruhe Institut für Technologie (KIT)

International Workshop on *p*-Adic Methods for Modeling of Complex Systems Bielefeld April 15–19, 2013

1. Baire Distance

Let $x, y \in X$ be words over an Alphabet A. The Baire distance is

$$d(x,y)=2^{-\ell(x,y)},$$

 $\ell(x, y) =$ length of longest common initial subword:

1. Baire Distance

Remark. Basis $\frac{1}{2}$ in Baire distance is arbitrary!

• Replace $\frac{1}{2}$ by any fixed $0 < \epsilon < 1$.

Definition. *e*-Baire distance:

$$d_{\epsilon}(x,y) = \epsilon^{\ell(x,y)}$$

Observe. The metrics d and d_{ϵ} are equivalent.

1. Baire Distance

Motivation.

Baire distance is an ultrametric:

$$d(x,y) \le \max \left\{ d(x,z), d(x,y) \right\}$$

▶ p-adic distance is an e-Baire distance, if (integral) p-adic expansions

$$x = \alpha_0 + \alpha_1 p + \alpha_2 p^2 + \dots$$

are viewed as words

 $\alpha_0 \alpha_1 \alpha_2 \dots$

Here, $\epsilon = \frac{1}{p}$.

Similar for discrete valuation rings, e.g. integer rings of *p*-adic number fields: Then *e* = ¹/_q with *q* = *p^k*.

Observation. Every finite alphabet A embeds into the ring of integers O_K of some *p*-adic number field as a (possibly incomplete) set of representants of the residue field O_K/\mathfrak{m}_K .

Typical example.
$$K = \mathbb{Q}_p$$
, $O_K = \mathbb{Z}_p$, $A \subseteq \{0, \dots, p-1\}$.

Consequence.

- Freedom of choice in prime number p.
- Freedom of choice in *p*-adic alphabet.

Example.

- No need for large *p* if alphabet is large.
- Why not use e.g. Teichmüller representatives as alphabet, and exploit their multiplicative structure?

- *p*-Adic classification aims at finding hierarchies inherent in data
- Task. Find an embedding of data into a *p*-adic number field Then tree structure of data is fixed

Traditional classification often imposes hierarchy on data

Applications.

- 2-Adic image sementation in spectral domain. A = {0,1} (Benois-Pineau, Khrennikov, Kotovich 2001)
- Decimal number data. A = {0, 1, ..., 9} (Contreras & Murtagh 2010)

Usefulness.

 Efficient hierarchical classification (Murtagh; Benois-Pineau, Khrennikov, Kotovich)

 Good classification results (Contreras & Murtagh).

Remark. Set X of words over alphabet A defines a unique dendrogram D(X), i.e. tree representation of X:

- Dendrogram D(X) does not depend on ϵ in ϵ -Baire metric d_{ϵ}
- ▶ View nodes of *D*(*X*) as *clusters*, and top node as *root*.

• Top half-edge points towards ∞ .

Classification means:

$$X=\coprod c_i,$$

i.e. disjoint union of clusters c_i .

► Classification is obtained by a *classification algorithm* with some optimization criteria, using d_e.

E.g. a splitting algorithm (P.E.B. 2009)

• Optimal classifications depend on ϵ .

Given data X

- with set $P = \{p_1, \ldots, p_n\}$ of attributes
- assuming possible values $V = \{v_1, \ldots, v_m\}$

By a permutation $\sigma \in S_n$ obtain:

$$p^{\sigma}(x) := p_{\sigma(1)}(x) p_{\sigma(2)}(x) \dots p_{\sigma(n)}(x),$$

a word with letters in alphabet V.

- σ - ϵ -Baire distance $d_{\epsilon}^{\sigma}(x, y)$.
- Which $\sigma \in S_n$ is most suitable for classification?

Look at distances between different words:

σ	1	2	3	4	5	6	7	8	9
<i>x</i> ₁	е	n	i	g	m	а			
<i>x</i> ₂	е	n	i	g	m	а	t	i	с
<i>x</i> 3	е	n	g	i	n	е			
<i>X</i> 4	t	r	а	i	n	i	n	bg	

• Average σ - ϵ -Baire distance $\times 12$:

$$E_{\sigma} = \epsilon^{6} + \epsilon^{2} + \epsilon^{0}$$
$$+ \epsilon^{6} + \epsilon^{2} + \epsilon^{0}$$
$$+ \epsilon^{2} + \epsilon^{2} + \epsilon^{0}$$
$$+ \epsilon^{0} + \epsilon^{0} + \epsilon^{0} = 6\epsilon^{0} + 4\epsilon^{2} + 2\epsilon^{6}$$

• Dendrogram $D(\sigma, X)$:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• 1 more dense cluster $\{x_1, x_2, x_3\}$, 1 singleton $\{x_4\}$

• Now
$$\tau = (9, 8, 7, 1, 2, 3, 4, 5, 6)$$
:

au	9	8	7	1	2	3	4	5	6
<i>x</i> ₁				е	n	i	g	m	а
<i>x</i> ₂	с	i	t	е	n	i	g	m	а
<i>x</i> 3				е	n	g	i	n	е
<i>X</i> 4		g	n	t	r	а	i	n	i

$$E_{\tau} = \epsilon^{0} + \epsilon^{5} + \epsilon^{1}$$
$$+ \epsilon^{0} + \epsilon^{0} + \epsilon^{0}$$
$$+ \epsilon^{5} + \epsilon^{0} + \epsilon^{1}$$
$$+ \epsilon^{1} + \epsilon^{0} + \epsilon^{1} = 6\epsilon^{0} + 4\epsilon^{1} + 2\epsilon^{5}$$

• Dendrogram $D(\tau, X)$:

▲□▶ ▲圖▶ ★ 臣▶ ★ 臣▶ = 臣 = の Q @

▶ 1 less dense cluster $\{x_1, x_3, x_4\}$, 1 singleton $\{x_2\}$

• Now
$$\rho = (8, 3, 1, 2, 4, 5, 6, 7, 9)$$
:

ρ	8	3	1	2	4	5	6	7	9
<i>x</i> ₁		i	е	n	g	m	а		
<i>x</i> ₂	i	i	е	n	g	m	а	t	с
<i>x</i> 3		g	е	n	i	n	е		
<i>X</i> 4	g	а	t	r	i	n	i	n	

$$E_{\rho} = \epsilon^{0} + \epsilon^{1} + \epsilon^{0}$$
$$+ \epsilon^{0} + \epsilon^{0} + \epsilon^{0}$$
$$+ \epsilon^{1} + \epsilon^{0} + \epsilon^{0}$$
$$+ \epsilon^{0} + \epsilon^{0} + \epsilon^{0} = 10\epsilon^{0} + 2\epsilon^{1}$$

• Dendrogram $D(\rho, X)$:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• 1 less dense cluster $\{x_1, x_3\}$, 2 singletons $\{x_2\}$ and $\{x_4\}$

Low average σ-ε-Baire distance leads to lots of common initial features. ⇒ high density clusters, few singletons

$$\blacktriangleright \ E_{\sigma} = 6\epsilon^0 + 4\epsilon^2 + 2\epsilon^6$$

 Highest average σ-ε-Baire distance has lots of branching at highest levels in the hierarchy, high number of singletons,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\blacktriangleright \ E_{\rho} = 10\epsilon^0 + 2\epsilon^1$$

Task. Find a permutation $\sigma \in S_n$ such that

$$E^{\sigma}(\epsilon, X) = \sum_{x,y \in X} d^{\sigma}_{\epsilon}(x,y)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is minimal.

• optimal Baire distance d_{ϵ}^{σ} .

Remark. Optimal σ depends on ϵ .

Problem. $|S_n| = n!$ is quite large for large *n*.

• $\Delta = \text{combinatorial } n - 1 \text{-simplex with corners } N = \{1, \dots, n\}$

- The faces F(N) are the power set 2^N
- $F_i(N) = \{x \in F(n) \mid |x| = i + 1\}$ are the *i*-faces of Δ

3. Optimal Baire distance The graph Γ_{Δ}

Vertices: the faces F(N)

Edges: pairs (v, v') with v ∈ F_i(N), v' ∈ F_{i+1}(N), and v ⊆ v'
 Use

$$c \colon 2^{N} \to \mathbb{N},$$
$$I \mapsto |\{(x_{1}, x_{2}) \in X^{2} \mid x_{1} \neq x_{2} \text{ and } \forall i \in I \colon i(x_{1}) = i(x_{2})\}|$$

Vertex weights:

$$w(v) = c(v)$$

Edge weights:

$$w(e) = w(v) - w(v')$$

where e = (v, v')

Lemma. $w(e) \ge 0$.

- Γ_Δ is a directed acyclic graph with initial vertex v_∅ and terminal vertex v_N.
- An injective path $\gamma: v_{\emptyset} \rightsquigarrow v_J$ in Γ_{Δ} has ϵ -length

$$\ell_\epsilon(\gamma) = \sum_{\mu=0}^{
u-1} w(e_\mu) \epsilon^\mu,$$

where $\gamma = (e_0, \ldots, e_{\nu-1})$ (sequence of edges)

Definition. Permutation $\sigma \in S_n$ is *compatible* with $\gamma : v_{\emptyset} \rightsquigarrow v_J$, if

$$\{\sigma(i)\}=J_i\setminus J_{i-1},$$

where γ travels through the sequence of sets $J_0 = \emptyset, \dots, J_{\nu} = J$.

Lemma. If σ is compatible with γ , then

$$E^{\sigma}(\epsilon) - \ell_{\epsilon}(\gamma) = c(N)\epsilon^{n},$$

i.e. does not depend on γ .

Corollary. Dijkstra's shortest path algorithm on Γ_{Δ} finds the global minima for $E^{\sigma}(\epsilon)$ with any given $\epsilon \in (0, 1)$.

Problem. Size of Γ_{Δ} makes Corollary impractical.

Gradient descent

Theorem. Gradient descent is of run-time complexity at most $O(n^2 \cdot |X^2|)$.

Proof.

- ▶ In first step, there are *n* choices for edges.
- After *n* steps, the permutations are found.
- Finding minimal edge in step ν is of complexity $O(\nu)$.
- Complexity of computing w(e) is at most O(|X²|)

Hence, the upper bound.

Gradient descent yields only local minimum.

For global minimum, take all minimal edges.

Algorithm 1. Input. Γ_{Δ} and weights *w*.

Start. $V_0 := \{v_\emptyset\}, E_0 := \{\text{all edges of } \Gamma_\Delta\}$ Step 1. $E_1 := \{e \in E_0 \mid o(e) \in V_0 \text{ and } w(e) \text{ smallest}\},$ $V_1 := \{t(e) \mid e \in E_1\}.$ Step ν . $E_{\nu} := \{e \in E_{\nu-1} \mid o(e) \in V_{\nu-1} \text{ and } w(e) \text{ smallest}\},$ $V_{\nu} := \{t(e) \mid e \in E_{\nu}\}.$

Output. All paths $\gamma: v_{\emptyset} \rightsquigarrow v_N$ with smallest sum of weights.

Theorem. There is a constant $C \in (0, 1)$ such that Algorithm 1 finds a global minimum for $E^{\sigma}(\epsilon)$, whenever $0 < \epsilon < C$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation.

• Let *L* be a list of sets, $I := \bigcup_{I \in I} J$.

▶ Then $c_L(J) := c(I \cup J)$. Observe: $c_{(\emptyset)}(J) = c(J)$

Algorithm 2. Input X, N.

1. Step. $L := (\emptyset)$ (ordered list) 1.1 Compute $M_1^L := \{i \mid c := c_L(i) \text{ is largest}\}$. If c > 0, continue. 1.2 Choose $i \in M_1^L$. Find a $j \in M_1^L \setminus \{i\}$ s.t. $c_L(i,j) = c$. If found, then find a $k \in M_1^L \setminus \{i,j\}$ s.t. $c_L(i,j,k) = c$. Etc. Obtain $I_1 \subseteq M_1^L$.

1.3 If
$$I_1 \neq M_1^L$$
, then Step 1.2 with $M_1^L := M_1^L \setminus I_1$.

1.4 Obtain $M_1^L = I_1 \cup \cdots \cup I_r$ (disjoint union) s.t. $c_L(I_\rho) = c$. 1.5 $\mathcal{I}_1^L := \{I_\rho \mid |I_\rho| \text{ is largest}\}.$

- ν . Step^{*L*}. $\forall I_{\rho} \in \mathcal{I}_{n-1}$ do
 - 1.1 L := append L with I_{ρ}
 - $1.2\,$ Do as in previous step
 - 1.3 Obtain \mathcal{I}_{ν}^{L}

Output. A set of sequences $L = (\emptyset, I_1, ..., I_{\nu})$ with disjoint $I_{\mu} \in \mathcal{I}^{(I_1,...,I_{\mu})}$ of cardinality i_{μ} .

▶ The permutations corresponding to *L* are all $\sigma \in S_n$ such that

$$\sigma(\{1,\ldots,i_1\}) = I_1$$

$$\sigma(\{i_1+1,\ldots,i_1+i_2\}) = I_2$$

$$\vdots$$

$$\sigma(\{i_1+\cdots+i_{\nu-1}+1,\ldots,i_1+\ldots,i_{\nu}\}) = I_{\nu}$$

$$I := \bigcup_{J \in L} J \Rightarrow \sigma(\{i_{\nu}+1,\ldots,n\}) = N \setminus I$$

∀ j ∈ N \ I: c_I(j) = 0,
 i.e. coincidences occur here only on the diagonal

Theorem. Algorithm 2 computes all σ such that $E^{\sigma}(t) \in \mathbb{N}[t]$ is lexicographically minimal.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example.

σ	1	2	3	4	5	6	7	8	9
<i>x</i> ₁	е	n	i	g	m	а			
<i>x</i> ₂	е	n	i	g	m	а	t	i	с
<i>x</i> ₃	е	n	g	i	n	e			
<i>X</i> 4	t	r	а	i	n	i	n	g	

▶ Step 1.
$$c_{(\emptyset)}(1) = c_{(\emptyset)}(2) = c_{(\emptyset)}(9) = 6$$
. $M_1^{(\emptyset)} = \{1, 2, 9\}$
 $c_{(\emptyset)}(1, 2) = 6$, $c_{(\emptyset)}(1, 2, 9) = 2 \Rightarrow l_1 = \{1, 2\}$, $l_2 = \{9\}$
 $\mathcal{I}_1^{(\emptyset)} = \{l_1\}$

Example.

σ	1	2	3	4	5	6	7	8	9
<i>x</i> ₁	е	n	i	g	m	а			
<i>x</i> ₂	е	n	i	g	m	а	t	i	с
<i>x</i> 3	е	n	g	i	n	е			
<i>x</i> 4	t	r	а	i	n	i	n	g	

•
$$I_1 = \{1, 2\}$$

▶ Step 2.
$$c_{(\emptyset, I_1)}(3) = \cdots = c_{(\emptyset, I_1)}(9) = 2.$$
 $M_2^{(\emptyset, I_1)} = \{3, \dots, 9\}$
 $c_{(\emptyset, I_1)}(3, 4) = c_{(\emptyset, I_1)}(3, 4, 5) = c_{(\emptyset, I_1)}(3, 4, 5, 6) = 2,$
 $c_{(\emptyset, I_1)}(3, 4, 5, 6, 7) = 0 \Rightarrow I_2 = \{3, 4, 5, 6\},$
 $|M_2^{(\emptyset, I_1)} \setminus I_2| = 3 < |I_2|.$ $\mathcal{I}_2^{(\emptyset, I_1)} = \{I_2\}$

Example.

σ	1	2	3	4	5	6	7	8	9
<i>x</i> ₁	е	n	i	g	m	а			
<i>x</i> ₂	е	n	i	g	m	а	t	i	с
<i>x</i> 3	е	n	g	i	n	е			
<i>X</i> 4	t	r	а	i	n	i	n	g	

•
$$I_1 = \{1, 2\}, I_2 = \{3, 4, 5, 6\}$$

► Step 3.
$$c_{(\emptyset, l_1, l_2)}(7) = c_{(\emptyset, l_1, l_2)}(8) = c_{(\emptyset, l_1, l_2)}(9) = 0.$$

Example.

σ	1	2	3	4	5	6	7	8	9
<i>x</i> ₁	е	n	i	g	m	а			
<i>x</i> ₂	е	n	i	g	m	а	t	i	с
<i>x</i> 3	е	n	g	i	n	е			
<i>X</i> 4	t	r	а	i	n	i	n	g	

• Output.
$$L = \{\emptyset, I_1, I_2\}$$

- ▶ $I_1 = \{1, 2\}, I_2 = \{3, 4, 5, 6\}, N \setminus (I_1 \cup I_2) = \{7, 8, 9\}$
- Any optimal σ permutes first {1,2}, then {3,4,5,6}, then {7,8,9}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $E^{\sigma}(t) = 6 + 4t^2 + 2t^6$

Complexity.

Worst case.

- c(1) is constant on all sets 1 of constant cardinality
- ▶ Hence, all permutations of *N* are computed.
- This example is pathologic: No preferred permutations!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Expected complexity.

- ▶ In general, c(I) = 0 for |I| large can be expected.
- The set $\{I \subseteq N \mid c(I) > 0\}$ is in general sparse.
- This should make Algorithm 3 practical in general.

- 1. Hyperspectral data (with Andreas Braun)
 - ► AVIRIS Indian Pines dataset: 145 × 145 pixels with 220 spectral channels
 - ► Coincidences due to signal vs. Coincidences due to noise ⇒ PCA yields six components explaining 99.66% of total variance
 - Reduce to six variables
 - Find optimal permutations in S_6 at different resolutions
 - Incorporate these into a multi-Baire-kernel SVM
 - Results are comparable to a Linear SVM, more complete results in most classes for multi-Baire-kernel SVM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Byzantine Chant.

- single melody
- drone (lson)

Skope of Chant.

- Enhance a poetic liturgical text
- Highlight important words
- Bring mind and heart to contents of text

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Audible Icon

Byzantine Chant.

Idea of classification steps.

- Highlight *emphasized* syllables (they occur in <u>important</u> words)
- Identify Cadenzas
- Cadenzas are intermediate (end of thought) or final (end of phrase)
- Bring phrases of different lengths to uniform length by inserting blanks
- The unemphasized syllables (somehow) lead to the pitch of the next emphasized syllable
- "somehow" depends on number of syllables and musical distance to target pitch
- Melody usually stays on one pitch, or moves one step. Larger jumps occur on occasion.

Paschal Canon, Tone 1.

It is the <u>dáy</u> of <u>Resurréction</u>! Let us be <u>rádiant</u>, o ye <u>péoples</u>! *Final Cadenza:* <u>Páscha</u>, the <u>Lórd</u>'s <u>Páscha</u>!

Alaska:

For from death to $\underline{\sf l(fe)}$ and from earth to $\underline{\sf héaven}$ has Christ our $\underline{\sf God}$ brought us

Boston:

For <u>Christ</u> God hath <u>brought</u> us from <u>death</u> unto <u>lífe</u>, and from <u>earth</u> unto <u>héaven</u>

Final Cadenza: as we sing the triúmphal hymn.

Refrain. Christ is risen from the dead.

http://www.musicarussica.com/compact_discs/i-099 http://www.musicarussica.com/compact_discs/i-083

Question. \exists optimal σ which brings highlighted syllables first, in order of occurence, then other syllables in some order?

▶ Phrases without final cadenzas B = Boston, A = Alaska

Final Cadenzas:

