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1. Baire Distance
Let x , y ∈ X be words over an Alphabet A. The Baire distance is

d(x , y) = 2−`(x ,y),

`(x , y) = length of longest common initial subword:

x

`(x ,y)

y

length = number of letters from A
(with multiple occurrences)



1. Baire Distance

Remark. Basis 1
2 in Baire distance is arbitrary!

I Replace 1
2 by any fixed 0 < ε < 1.

Definition. ε-Baire distance:

dε(x , y) = ε`(x ,y)

Observe. The metrics d and dε are equivalent.



1. Baire Distance

Motivation.

I Baire distance is an ultrametric:

d(x , y) ≤ max {d(x , z), d(x , y)}

I p-adic distance is an ε-Baire distance, if (integral) p-adic
expansions

x = α0 + α1p + α2p2 + . . .

are viewed as words
α0 α1 α2 . . .

Here, ε = 1
p .

I Similar for discrete valuation rings, e.g. integer rings of p-adic
number fields: Then ε = 1

q with q = pk .



2. p-Adic Classification

Observation. Every finite alphabet A embeds into the ring of
integers OK of some p-adic number field as a (possibly incomplete)
set of representants of the residue field OK/mK .

Typical example. K = Qp, OK = Zp, A ⊆ {0, . . . , p − 1}.

Consequence.

I Freedom of choice in prime number p.

I Freedom of choice in p-adic alphabet.

Example.

I No need for large p if alphabet is large.

I Why not use e.g. Teichmüller representatives as alphabet, and
exploit their multiplicative structure?



2. p-Adic Classification

I p-Adic classification aims at finding hierarchies inherent in
data

I Task. Find an embedding of data into a p-adic number field

Then tree structure of data is fixed

I Traditional classification often imposes hierarchy on data



2. p-Adic Classification

Applications.

I 2-Adic image sementation in spectral domain. A = {0, 1}
(Benois-Pineau, Khrennikov, Kotovich 2001)

I Decimal number data. A = {0, 1, . . . , 9}
(Contreras & Murtagh 2010)

Usefulness.

I Efficient hierarchical classification
(Murtagh; Benois-Pineau, Khrennikov, Kotovich)

I Good classification results
(Contreras & Murtagh).



2. p-Adic Classification

Remark. Set X of words over alphabet A defines a unique
dendrogram D(X ), i.e. tree representation of X :

______
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•

x1 x2 x3 x4 x5 x6 x7 x8

where path • − − − • represents longest common subword of
{x1, x2, x3}.



2. p-Adic Classification

I Dendrogram D(X ) does not depend on ε in ε-Baire metric dε
I View nodes of D(X ) as clusters, and top node as root.

•

____
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� •
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�

___
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�

x1 x2 x3 x4 x5 x6 x7 x8

I Top half-edge points towards ∞.



2. p-Adic Classification

I Classification means:
X =

∐
ci ,

i.e. disjoint union of clusters ci .

I Classification is obtained by a classification algorithm with
some optimization criteria, using dε.

E.g. a splitting algorithm (P.E.B. 2009)

I Optimal classifications depend on ε.



3. Optimal Baire distance

I Given data X

I with set P = {p1, . . . , pn} of attributes

I assuming possible values V = {v1, . . . , vm}

By a permutation σ ∈ Sn obtain:

pσ(x) := pσ(1)(x) pσ(2)(x) . . . pσ(n)(x),

a word with letters in alphabet V .

I σ-ε-Baire distance dσε (x , y).

I Which σ ∈ Sn is most suitable for classification?



3. Optimal Baire distance

I Look at distances between different words:

σ 1 2 3 4 5 6 7 8 9

x1 e n i g m a

x2 e n i g m a t i c

x3 e n g i n e

x4 t r a i n i n g

I Average σ-ε-Baire distance ×12:

Eσ = ε6 + ε2 + ε0

+ ε6 + ε2 + ε0

+ ε2 + ε2 + ε0

+ ε0 + ε0 + ε0 = 6ε0 + 4ε2 + 2ε6



3. Optimal Baire distance

I Dendrogram D(σ,X ):

0−
1−
2−
3−
4−
5−
6−

x1 x2 x3 x4

I 1 more dense cluster {x1, x2, x3}, 1 singleton {x4}



3. Optimal Baire distance

I Now τ = (9, 8, 7, 1, 2, 3, 4, 5, 6):

τ 9 8 7 1 2 3 4 5 6

x1 e n i g m a

x2 c i t e n i g m a

x3 e n g i n e

x4 g n t r a i n i

Eτ = ε0 + ε5 + ε1

+ ε0 + ε0 + ε0

+ ε5 + ε0 + ε1

+ ε1 + ε0 + ε1 = 6ε0 + 4ε1 + 2ε5



3. Optimal Baire distance

I Dendrogram D(τ,X ):

0−
1−
2−
3−
4−
5−

x1 x3 x4 x2

I 1 less dense cluster {x1, x3, x4}, 1 singleton {x2}



3. Optimal Baire distance

I Now ρ = (8, 3, 1, 2, 4, 5, 6, 7, 9):

ρ 8 3 1 2 4 5 6 7 9

x1 i e n g m a

x2 i i e n g m a t c

x3 g e n i n e

x4 g a t r i n i n

Eρ = ε0 + ε1 + ε0

+ ε0 + ε0 + ε0

+ ε1 + ε0 + ε0

+ ε0 + ε0 + ε0 = 10ε0 + 2ε1



3. Optimal Baire distance

I Dendrogram D(ρ,X ):

0−
1−

x2 x1 x3 x4

I 1 less dense cluster {x1, x3}, 2 singletons {x2} and {x4}



3. Optimal Baire distance

I Low average σ-ε-Baire distance leads to lots of common initial
features. ⇒ high density clusters, few singletons

I Eσ = 6ε0 + 4ε2 + 2ε6

I Highest average σ-ε-Baire distance has lots of branching at
highest levels in the hierarchy, high number of singletons,

I Eρ = 10ε0 + 2ε1



3. Optimal Baire distance

Task. Find a permutation σ ∈ Sn such that

Eσ(ε,X ) =
∑

x ,y∈X
dσε (x , y)

is minimal.

I optimal Baire distance dσε .

Remark. Optimal σ depends on ε.

Problem. |Sn| = n! is quite large for large n.



3. Optimal Baire distance

I ∆ = combinatorial n − 1-simplex with corners N = {1, . . . , n}

I The faces F (N) are the power set 2N

I Fi (N) = {x ∈ F (n) | |x | = i + 1} are the i-faces of ∆



3. Optimal Baire distance
The graph Γ∆

I Vertices: the faces F (N)

I Edges: pairs (v , v ′) with v ∈ Fi (N), v ′ ∈ Fi+1(N), and v ⊆ v ′

I Use

c : 2N → N,

I 7→ |{(x1, x2) ∈ X 2 | x1 6= x2 and ∀i ∈ I : i(x1) = i(x2)}|

I Vertex weights:
w(v) = c(v)

I Edge weights:
w(e) = w(v)− w(v ′),

where e = (v , v ′)



3. Optimal Baire distance

Lemma. w(e) ≥ 0.

I Γ∆ is a directed acyclic graph with initial vertex v∅ and
terminal vertex vN .

I An injective path γ : v∅ ; vJ in Γ∆ has ε-length

`ε(γ) =
ν−1∑
µ=0

w(eµ)εµ,

where γ = (e0, . . . , eν−1) (sequence of edges)



3. Optimal Baire distance

Definition. Permutation σ ∈ Sn is compatible with γ : v∅ ; vJ , if

{σ(i)} = Ji \ Ji−1,

where γ travels through the sequence of sets J0 = ∅, . . . , Jν = J.

Lemma. If σ is compatible with γ, then

Eσ(ε)− `ε(γ) = c(N)εn,

i.e. does not depend on γ.

Corollary. Dijkstra’s shortest path algorithm on Γ∆ finds the
global minima for Eσ(ε) with any given ε ∈ (0, 1).

Problem. Size of Γ∆ makes Corollary impractical.



3. Optimal Baire distance

I Gradient descent

Theorem. Gradient descent is of run-time complexity at most
O(n2 · |X 2|).

Proof.

I In first step, there are n choices for edges.

I After n steps, the permutations are found.

I Finding minimal edge in step ν is of complexity O(ν).

I Complexity of computing w(e) is at most O(|X 2|)

Hence, the upper bound.



3. Optimal Baire distance

I Gradient descent yields only local minimum.

I For global minimum, take all minimal edges.

Algorithm 1. Input. Γ∆ and weights w .

Start. V0 := {v∅}, E0 := {all edges of Γ∆}

Step 1. E1 := {e ∈ E0 | o(e) ∈ V0 and w(e) smallest},
V1 := {t(e) | e ∈ E1}.

Step ν. Eν := {e ∈ Eν−1 | o(e) ∈ Vν−1 and w(e) smallest},
Vν := {t(e) | e ∈ Eν}.

Output. All paths γ : v∅ ; vN with smallest sum of weights.



3. Optimal Baire distance

Theorem. There is a constant C ∈ (0, 1) such that Algorithm 1
finds a global minimum for Eσ(ε), whenever 0 < ε < C .



3. Optimal Baire distance
Notation.

I Let L be a list of sets, I :=
⋃
J∈L

J.

I Then cL(J) := c(I ∪ J). Observe: c(∅)(J) = c(J)

Algorithm 2. Input X ,N.

1. Step. L := (∅) (ordered list)
1.1 Compute ML

1 := {i | c := cL(i) is largest}. If c > 0, continue.

1.2 Choose i ∈ ML
1 . Find a j ∈ ML

1 \ {i} s.t. cL(i , j) = c . If found,
then find a k ∈ ML

1 \ {i , j} s.t. cL(i , j , k) = c . Etc. Obtain
I1 ⊆ ML

1 .

1.3 If I1 6= ML
1 , then Step 1.2 with ML

1 := ML
1 \ I1.

1.4 Obtain ML
1 = I1 ∪ · · · ∪ Ir (disjoint union) s.t. cL(Iρ) = c .

1.5 IL1 := {Iρ | |Iρ| is largest}.

ν. StepL. ∀Iρ ∈ In−1 do
1.1 L := append L with Iρ

1.2 Do as in previous step

1.3 Obtain ILν



3. Optimal Baire distance

Output. A set of sequences L = (∅, I1, . . . , Iν) with disjoint
Iµ ∈ I(I1,...,Iµ) of cardinality iµ.

I The permutations corresponding to L are all σ ∈ Sn such that

σ({1, . . . , i1}) = I1

σ({i1 + 1, . . . , i1 + i2}) = I2
...

σ({i1 + · · ·+ iν−1 + 1, . . . , i1 + . . . , iν}) = Iν

I I :=
⋃
J∈L

J ⇒ σ({iν + 1, . . . , n}) = N \ I

I ∀ j ∈ N \ I : cI (j) = 0,

i.e. coincidences occur here only on the diagonal



3. Optimal Baire distance

Theorem. Algorithm 2 computes all σ such that Eσ(t) ∈ N[t] is
lexicographically minimal.



3. Optimal Baire distance

Example.

σ 1 2 3 4 5 6 7 8 9

x1 e n i g m a

x2 e n i g m a t i c

x3 e n g i n e

x4 t r a i n i n g

I Step 1. c(∅)(1) = c(∅)(2) = c(∅)(9) = 6. M
(∅)
1 = {1, 2, 9}

c(∅)(1, 2) = 6, c(∅)(1, 2, 9) = 2 ⇒ I1 = {1, 2}, I2 = {9}

I(∅)
1 = {I1}



3. Optimal Baire distance

Example.

σ 1 2 3 4 5 6 7 8 9

x1 e n i g m a

x2 e n i g m a t i c

x3 e n g i n e

x4 t r a i n i n g

I I1 = {1, 2}

I Step 2. c(∅,I1)(3) = · · · = c(∅,I1)(9) = 2. M
(∅,I1)
2 = {3, . . . , 9}

c(∅,I1)(3, 4) = c(∅,I1)(3, 4, 5) = c(∅,I1)(3, 4, 5, 6) = 2,

c(∅,I1)(3, 4, 5, 6, 7) = 0 ⇒ I2 = {3, 4, 5, 6},

|M(∅,I1)
2 \ I2| = 3 < |I2|. I(∅,I1)

2 = {I2}



3. Optimal Baire distance

Example.

σ 1 2 3 4 5 6 7 8 9

x1 e n i g m a

x2 e n i g m a t i c

x3 e n g i n e

x4 t r a i n i n g

I I1 = {1, 2}, I2 = {3, 4, 5, 6}

I Step 3. c(∅,I1,I2)(7) = c(∅,I1,I2)(8) = c(∅,I1,I2)(9) = 0.



3. Optimal Baire distance

Example.

σ 1 2 3 4 5 6 7 8 9

x1 e n i g m a

x2 e n i g m a t i c

x3 e n g i n e

x4 t r a i n i n g

I Output. L = {∅, I1, I2}
I I1 = {1, 2}, I2 = {3, 4, 5, 6}, N \ (I1 ∪ I2) = {7, 8, 9}
I Any optimal σ permutes first {1, 2}, then {3, 4, 5, 6}, then
{7, 8, 9}

I Eσ(t) = 6 + 4t2 + 2t6



3. Optimal Baire distance

Complexity.

Worst case.
σ 1 2 . . . n

x1 ×
x2 ×
...

. . .

xn ×

I c(I ) is constant on all sets I of constant cardinality

I Hence, all permutations of N are computed.

I This example is pathologic: No preferred permutations!



3. Optimal Baire distance

Expected complexity.

I In general, c(I ) = 0 for |I | large can be expected.

I The set {I ⊆ N | c(I ) > 0} is in general sparse.

I This should make Algorithm 3 practical in general.



4. Application

1. Hyperspectral data (with Andreas Braun)

I AVIRIS Indian Pines dataset: 145× 145 pixels with 220
spectral channels

I Coincidences due to signal vs. Coincidences due to noise
⇒ PCA yields six components explaining 99.66% of total
variance

I Reduce to six variables

I Find optimal permutations in S6 at different resolutions

I Incorporate these into a multi-Baire-kernel SVM

I Results are comparable to a Linear SVM, more complete
results in most classes for multi-Baire-kernel SVM



4. Application

Byzantine Chant.

I single melody

I drone (Ison)

Skope of Chant.

I Enhance a poetic liturgical text

I Highlight important words

I Bring mind and heart to contents of text

I Audible Icon



4. Application
Byzantine Chant.

Idea of classification steps.

I Highlight emphasized syllables (they occur in important
words)

I Identify Cadenzas

I Cadenzas are intermediate (end of thought) or final (end of
phrase)

I Bring phrases of different lengths to uniform length by
inserting blanks

I The unemphasized syllables (somehow) lead to the pitch of
the next emphasized syllable

I “somehow” depends on number of syllables and musical
distance to target pitch

I Melody usually stays on one pitch, or moves one step. Larger
jumps occur on occasion.



4. Application

Paschal Canon, Tone 1.

It is the dáy of Resurréction! Let us be rádiant, o ye péoples!
Final Cadenza: Páscha, the Lórd’s Páscha!

Alaska:
For from death to ĺıfe, and from earth to héaven has Christ our
God brought us

Boston:
For Christ God hath brought us from death unto ĺıfe,
and from earth unto héaven

Final Cadenza: as we sing the triúmphal hymn.

Refrain. Christ is risen from the dead.

http://www.musicarussica.com/compact_discs/i-099

http://www.musicarussica.com/compact_discs/i-083

http://www.musicarussica.com/compact_discs/i-099
http://www.musicarussica.com/compact_discs/i-083


4. Application
Question. ∃ optimal σ which brings highlighted syllables first, in
order of occurence, then other syllables in some order?

I Phrases without final cadenzas B = Boston, A = Alaska

0−
1−
2−

x1 x3 xB
2 xB

4 xA
2

I Final Cadenzas:

0−
1−
2−
3−

f1 f3 f B
2 f A

2


