Finding the asymptotically optimal Baire distance for multi-channel data

Patrick Erik Bradley

> Institute für Photogrammetrie und Fernerkundung Karlsruhe Institut für Technologie (KIT)

International Workshop on p-Adic Methods for Modeling of Complex Systems

Bielefeld

$$
\text { April 15-19, } 2013
$$

1. Baire Distance

Let $x, y \in X$ be words over an Alphabet A. The Baire distance is

$$
d(x, y)=2^{-\ell(x, y)}
$$

$\ell(x, y)=$ length of longest common initial subword:

length $=$ number of letters from A
(with multiple occurrences)

1. Baire Distance

Remark. Basis $\frac{1}{2}$ in Baire distance is arbitrary!

- Replace $\frac{1}{2}$ by any fixed $0<\epsilon<1$.

Definition. ϵ-Baire distance:

$$
d_{\epsilon}(x, y)=\epsilon^{\ell(x, y)}
$$

Observe. The metrics d and d_{ϵ} are equivalent.

1. Baire Distance

Motivation.

- Baire distance is an ultrametric:

$$
d(x, y) \leq \max \{d(x, z), d(x, y)\}
$$

- p-adic distance is an ϵ-Baire distance, if (integral) p-adic expansions

$$
x=\alpha_{0}+\alpha_{1} p+\alpha_{2} p^{2}+\ldots
$$

are viewed as words

$$
\alpha_{0} \alpha_{1} \alpha_{2} \ldots
$$

Here, $\epsilon=\frac{1}{p}$.

- Similar for discrete valuation rings, e.g. integer rings of p-adic number fields: Then $\epsilon=\frac{1}{q}$ with $q=p^{k}$.

2. p-Adic Classification

Observation. Every finite alphabet A embeds into the ring of integers O_{K} of some p-adic number field as a (possibly incomplete) set of representants of the residue field O_{K} / \mathfrak{m}_{K}.

Typical example. $K=\mathbb{Q}_{p}, O_{K}=\mathbb{Z}_{p}, A \subseteq\{0, \ldots, p-1\}$.

Consequence.

- Freedom of choice in prime number p.
- Freedom of choice in p-adic alphabet.

Example.

- No need for large p if alphabet is large.
- Why not use e.g. Teichmüller representatives as alphabet, and exploit their multiplicative structure?

2. p-Adic Classification

- p-Adic classification aims at finding hierarchies inherent in data
- Task. Find an embedding of data into a p-adic number field Then tree structure of data is fixed
- Traditional classification often imposes hierarchy on data

2. p-Adic Classification

Applications.

- 2-Adic image sementation in spectral domain. $A=\{0,1\}$ (Benois-Pineau, Khrennikov, Kotovich 2001)
- Decimal number data. $A=\{0,1, \ldots, 9\}$ (Contreras \& Murtagh 2010)

Usefulness.

- Efficient hierarchical classification
(Murtagh; Benois-Pineau, Khrennikov, Kotovich)
- Good classification results (Contreras \& Murtagh).

2. p-Adic Classification

Remark. Set X of words over alphabet A defines a unique dendrogram $D(X)$, i.e. tree representation of X :

where path • - - • represents longest common subword of $\left\{x_{1}, x_{2}, x_{3}\right\}$.

2. p-Adic Classification

- Dendrogram $D(X)$ does not depend on ϵ in ϵ-Baire metric d_{ϵ}
- View nodes of $D(X)$ as clusters, and top node as root.

- Top half-edge points towards ∞.

2. p-Adic Classification

- Classification means:

$$
X=\coprod c_{i}
$$

i.e. disjoint union of clusters c_{i}.

- Classification is obtained by a classification algorithm with some optimization criteria, using d_{ϵ}.
E.g. a splitting algorithm (P.E.B. 2009)
- Optimal classifications depend on ϵ.

3. Optimal Baire distance

- Given data X
- with set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of attributes
- assuming possible values $V=\left\{v_{1}, \ldots, v_{m}\right\}$

By a permutation $\sigma \in S_{n}$ obtain:

$$
p^{\sigma}(x):=p_{\sigma(1)}(x) p_{\sigma(2)}(x) \ldots p_{\sigma(n)}(x)
$$

a word with letters in alphabet V.

- σ - ϵ-Baire distance $d_{\epsilon}^{\sigma}(x, y)$.
- Which $\sigma \in S_{n}$ is most suitable for classification?

3. Optimal Baire distance

- Look at distances between different words:

σ	1	2	3	4	5	6	7	8	9
x_{1}	e	n	i	g	m	a			
x_{2}	e	n	i	g	m	a	t	i	c
x_{3}	e	n	g	i	n	e			
x_{4}	t	r	a	i	n	i	n	g	

- Average σ - ϵ-Baire distance $\times 12$:

$$
\begin{aligned}
E_{\sigma} & =\epsilon^{6}+\epsilon^{2}+\epsilon^{0} \\
& +\epsilon^{6}+\epsilon^{2}+\epsilon^{0} \\
& +\epsilon^{2}+\epsilon^{2}+\epsilon^{0} \\
& +\epsilon^{0}+\epsilon^{0}+\epsilon^{0}=6 \epsilon^{0}+4 \epsilon^{2}+2 \epsilon^{6}
\end{aligned}
$$

3. Optimal Baire distance

- Dendrogram $D(\sigma, X)$:

- 1 more dense cluster $\left\{x_{1}, x_{2}, x_{3}\right\}, 1$ singleton $\left\{x_{4}\right\}$

3. Optimal Baire distance

- Now $\tau=(9,8,7,1,2,3,4,5,6)$:

τ	9	8	7	1	2	3	4	5	6
x_{1}				e	n	i	g	m	a
x_{2}	c	i	t	e	n	i	g	m	a
x_{3}				e	n	g	i	n	e
x_{4}		g	n	t	r	a	i	n	i

$$
\begin{aligned}
E_{\tau} & =\epsilon^{0}+\epsilon^{5}+\epsilon^{1} \\
& +\epsilon^{0}+\epsilon^{0}+\epsilon^{0} \\
& +\epsilon^{5}+\epsilon^{0}+\epsilon^{1} \\
& +\epsilon^{1}+\epsilon^{0}+\epsilon^{1}=6 \epsilon^{0}+4 \epsilon^{1}+2 \epsilon^{5}
\end{aligned}
$$

3. Optimal Baire distance

- Dendrogram $D(\tau, X)$:

- 1 less dense cluster $\left\{x_{1}, x_{3}, x_{4}\right\}, 1$ singleton $\left\{x_{2}\right\}$

3. Optimal Baire distance

- Now $\rho=(8,3,1,2,4,5,6,7,9)$:

ρ	8	3	1	2	4	5	6	7	9
x_{1}		i	e	n	g	m	a		
x_{2}	i	i	e	n	g	m	a	t	c
x_{3}		g	e	n	i	n	e		
x_{4}	g	a	t	r	i	n	i	n	

$$
\begin{aligned}
E_{\rho} & =\epsilon^{0}+\epsilon^{1}+\epsilon^{0} \\
& +\epsilon^{0}+\epsilon^{0}+\epsilon^{0} \\
& +\epsilon^{1}+\epsilon^{0}+\epsilon^{0} \\
& +\epsilon^{0}+\epsilon^{0}+\epsilon^{0}=10 \epsilon^{0}+2 \epsilon^{1}
\end{aligned}
$$

3. Optimal Baire distance

- Dendrogram $D(\rho, X)$:

- 1 less dense cluster $\left\{x_{1}, x_{3}\right\}, 2$ singletons $\left\{x_{2}\right\}$ and $\left\{x_{4}\right\}$

3. Optimal Baire distance

- Low average σ - ϵ-Baire distance leads to lots of common initial features. \Rightarrow high density clusters, few singletons
- $E_{\sigma}=6 \epsilon^{0}+4 \epsilon^{2}+2 \epsilon^{6}$
- Highest average σ - ϵ-Baire distance has lots of branching at highest levels in the hierarchy, high number of singletons,
- $E_{\rho}=10 \epsilon^{0}+2 \epsilon^{1}$

3. Optimal Baire distance

Task. Find a permutation $\sigma \in S_{n}$ such that

$$
E^{\sigma}(\epsilon, X)=\sum_{x, y \in X} d_{\epsilon}^{\sigma}(x, y)
$$

is minimal.

- optimal Baire distance d_{ϵ}^{σ}.

Remark. Optimal σ depends on ϵ.
Problem. $\left|S_{n}\right|=n$! is quite large for large n.

3. Optimal Baire distance

- $\Delta=$ combinatorial n - 1 -simplex with corners $N=\{1, \ldots, n\}$
- The faces $F(N)$ are the power set 2^{N}
- $F_{i}(N)=\{x \in F(n)| | x \mid=i+1\}$ are the i-faces of Δ

3. Optimal Baire distance

The graph Γ_{Δ}

- Vertices: the faces $F(N)$
- Edges: pairs $\left(v, v^{\prime}\right)$ with $v \in F_{i}(N), v^{\prime} \in F_{i+1}(N)$, and $v \subseteq v^{\prime}$
- Use

$$
c: 2^{N} \rightarrow \mathbb{N},
$$

$$
I \mapsto \mid\left\{\left(x_{1}, x_{2}\right) \in X^{2} \mid x_{1} \neq x_{2} \text { and } \forall i \in I: i\left(x_{1}\right)=i\left(x_{2}\right)\right\} \mid
$$

- Vertex weights:

$$
w(v)=c(v)
$$

- Edge weights:

$$
w(e)=w(v)-w\left(v^{\prime}\right)
$$

where $e=\left(v, v^{\prime}\right)$

3. Optimal Baire distance

Lemma. $w(e) \geq 0$.

- Γ_{Δ} is a directed acyclic graph with initial vertex v_{\emptyset} and terminal vertex v_{N}.
- An injective path $\gamma: v_{\emptyset} \sim v_{J}$ in Γ_{Δ} has ϵ-length

$$
\ell_{\epsilon}(\gamma)=\sum_{\mu=0}^{\nu-1} w\left(e_{\mu}\right) \epsilon^{\mu}
$$

where $\gamma=\left(e_{0}, \ldots, e_{\nu-1}\right)$ (sequence of edges)

3. Optimal Baire distance

Definition. Permutation $\sigma \in S_{n}$ is compatible with $\gamma: v_{\emptyset} \leadsto v_{\jmath}$, if

$$
\{\sigma(i)\}=J_{i} \backslash J_{i-1}
$$

where γ travels through the sequence of sets $J_{0}=\emptyset, \ldots, J_{\nu}=J$.
Lemma. If σ is compatible with γ, then

$$
E^{\sigma}(\epsilon)-\ell_{\epsilon}(\gamma)=c(N) \epsilon^{n}
$$

i.e. does not depend on γ.

Corollary. Dijkstra's shortest path algorithm on Γ_{Δ} finds the global minima for $E^{\sigma}(\epsilon)$ with any given $\epsilon \in(0,1)$.

Problem. Size of Γ_{Δ} makes Corollary impractical.

3. Optimal Baire distance

- Gradient descent

Theorem. Gradient descent is of run-time complexity at most $O\left(n^{2} \cdot\left|X^{2}\right|\right)$.

Proof.

- In first step, there are n choices for edges.
- After n steps, the permutations are found.
- Finding minimal edge in step ν is of complexity $O(\nu)$.
- Complexity of computing $w(e)$ is at most $O\left(\left|X^{2}\right|\right)$

Hence, the upper bound.

3. Optimal Baire distance

- Gradient descent yields only local minimum.
- For global minimum, take all minimal edges.

Algorithm 1. Input. Γ_{Δ} and weights w.
Start. $V_{0}:=\left\{v_{\emptyset}\right\}, E_{0}:=\left\{\right.$ all edges of $\left.\Gamma_{\Delta}\right\}$
Step 1. $E_{1}:=\left\{e \in E_{0} \mid o(e) \in V_{0}\right.$ and $w(e)$ smallest $\}$, $V_{1}:=\left\{t(e) \mid e \in E_{1}\right\}$.

Step $\nu . E_{\nu}:=\left\{e \in E_{\nu-1} \mid o(e) \in V_{\nu-1}\right.$ and $w(e)$ smallest $\}$, $V_{\nu}:=\left\{t(e) \mid e \in E_{\nu}\right\}$.

Output. All paths $\gamma: v_{\emptyset} \leadsto v_{N}$ with smallest sum of weights.

3. Optimal Baire distance

Theorem. There is a constant $C \in(0,1)$ such that Algorithm 1 finds a global minimum for $E^{\sigma}(\epsilon)$, whenever $0<\epsilon<C$.

3. Optimal Baire distance

Notation.

- Let L be a list of sets, $I:=\bigcup_{J \in L} J$.
- Then $c_{L}(J):=c(I \cup J)$. Observe: $c_{(\emptyset)}(J)=c(J)$

Algorithm 2. Input X, N.

1. Step. $L:=(\emptyset)$ (ordered list)
1.1 Compute $M_{1}^{L}:=\left\{i \mid c:=c_{L}(i)\right.$ is largest $\}$. If $c>0$, continue.
1.2 Choose $i \in M_{1}^{L}$. Find a $j \in M_{1}^{L} \backslash\{i\}$ s.t. $c_{L}(i, j)=c$. If found, then find a $k \in M_{1}^{L} \backslash\{i, j\}$ s.t. $c_{L}(i, j, k)=c$. Etc. Obtain $l_{1} \subseteq M_{1}^{L}$.
1.3 If $I_{1} \neq M_{1}^{L}$, then Step 1.2 with $M_{1}^{L}:=M_{1}^{L} \backslash I_{1}$.
1.4 Obtain $M_{1}^{L}=I_{1} \cup \cdots \cup I_{r}$ (disjoint union) s.t. $c_{L}\left(I_{\rho}\right)=c$.
$1.5 \mathcal{I}_{1}^{L}:=\left\{I_{\rho}| | I_{\rho} \mid\right.$ is largest $\}$.
ν. Step ${ }^{L} . \forall I_{\rho} \in \mathcal{I}_{n-1}$ do
1.1 $L:=$ append L with I_{ρ}
1.2 Do as in previous step
1.3 Obtain \mathcal{I}_{ν}^{L}

3. Optimal Baire distance

Output. A set of sequences $L=\left(\emptyset, I_{1}, \ldots, I_{\nu}\right)$ with disjoint $I_{\mu} \in \mathcal{I}^{\left(I_{1}, \ldots, I_{\mu}\right)}$ of cardinality i_{μ}.

- The permutations corresponding to L are all $\sigma \in S_{n}$ such that

$$
\begin{aligned}
\sigma\left(\left\{1, \ldots, i_{1}\right\}\right) & =I_{1} \\
\sigma\left(\left\{i_{1}+1, \ldots, i_{1}+i_{2}\right\}\right) & =I_{2} \\
\vdots & \\
\sigma\left(\left\{i_{1}+\cdots+i_{\nu-1}+1, \ldots, i_{1}+\ldots, i_{\nu}\right\}\right) & =I_{\nu}
\end{aligned}
$$

- I:= $\bigcup_{J \in L} J \Rightarrow \sigma\left(\left\{i_{\nu}+1, \ldots, n\right\}\right)=N \backslash I$
- $\forall j \in N \backslash I: c_{l}(j)=0$,
i.e. coincidences occur here only on the diagonal

3. Optimal Baire distance

Theorem. Algorithm 2 computes all σ such that $E^{\sigma}(t) \in \mathbb{N}[t]$ is lexicographically minimal.

3. Optimal Baire distance

Example.

σ	1	2	3	4	5	6	7	8	9
x_{1}	e	n	i	g	m	a			
x_{2}	e	n	i	g	m	a	t	i	c
x_{3}	e	n	g	i	n	e			
x_{4}	t	r	a	i	n	i	n	g	

- Step 1. $c_{(\emptyset)}(1)=c_{(\emptyset)}(2)=c_{(\emptyset)}(9)=6 . M_{1}^{(\emptyset)}=\{1,2,9\}$
$c_{(\emptyset)}(1,2)=6, c_{(\emptyset)}(1,2,9)=2 \Rightarrow I_{1}=\{1,2\}, I_{2}=\{9\}$ $\mathcal{I}_{1}^{(\emptyset)}=\left\{I_{1}\right\}$

3. Optimal Baire distance

Example.

σ	1	2	3	4	5	6	7	8	9
x_{1}	e	n	i	g	m	a			
x_{2}	e	n	i	g	m	a	t	i	c
x_{3}	e	n	g	i	n	e			
x_{4}	t	r	a	i	n	i	n	g	

- $I_{1}=\{1,2\}$
- Step 2. $c_{\left(\emptyset, l_{1}\right)}(3)=\cdots=c_{\left(\emptyset, l_{1}\right)}(9)=2 . M_{2}^{\left(\emptyset, l_{1}\right)}=\{3, \ldots, 9\}$

$$
\begin{aligned}
& c_{\left(\emptyset, I_{1}\right)}(3,4)=c_{\left(\emptyset, I_{1}\right)}(3,4,5)=c_{\left(\emptyset, I_{1}\right)}(3,4,5,6)=2, \\
& c_{\left(\emptyset, I_{1}\right)}(3,4,5,6,7)=0 \Rightarrow I_{2}=\{3,4,5,6\}, \\
& \left|M_{2}^{\left(\emptyset, I_{1}\right)} \backslash I_{2}\right|=3<\left|I_{2}\right| . \quad \mathcal{I}_{2}^{\left(\emptyset, I_{1}\right)}=\left\{I_{2}\right\}
\end{aligned}
$$

3. Optimal Baire distance

Example.

σ	1	2	3	4	5	6	7	8	9
x_{1}	e	n	i	g	m	a			
x_{2}	e	n	i	g	m	a	t	i	c
x_{3}	e	n	g	i	n	e			
x_{4}	t	r	a	i	n	i	n	g	

- $I_{1}=\{1,2\}, I_{2}=\{3,4,5,6\}$
- Step 3. $c_{\left(\emptyset, l_{1}, l_{2}\right)}(7)=c_{\left(\emptyset, l_{1}, l_{2}\right)}(8)=c_{\left(\emptyset, l_{1}, l_{2}\right)}(9)=0$.

3. Optimal Baire distance

Example.

σ	1	2	3	4	5	6	7	8	9
x_{1}	e	n	i	g	m	a			
x_{2}	e	n	i	g	m	a	t	i	c
x_{3}	e	n	g	i	n	e			
x_{4}	t	r	a	i	n	i	n	g	

- Output. $L=\left\{\emptyset, I_{1}, I_{2}\right\}$
- $I_{1}=\{1,2\}, I_{2}=\{3,4,5,6\}, N \backslash\left(I_{1} \cup I_{2}\right)=\{7,8,9\}$
- Any optimal σ permutes first $\{1,2\}$, then $\{3,4,5,6\}$, then $\{7,8,9\}$
- $E^{\sigma}(t)=6+4 t^{2}+2 t^{6}$

3. Optimal Baire distance

Complexity.

Worst case.

σ	1	2	\cdots	n
x_{1}	\times			
x_{2}		\times		
\vdots			\ddots	
x_{n}				\times

- $c(I)$ is constant on all sets $/$ of constant cardinality
- Hence, all permutations of N are computed.
- This example is pathologic: No preferred permutations!

3. Optimal Baire distance

Expected complexity.

- In general, $c(I)=0$ for $|I|$ large can be expected.
- The set $\{I \subseteq N \mid c(I)>0\}$ is in general sparse.
- This should make Algorithm 3 practical in general.

4. Application

1. Hyperspectral data (with Andreas Braun)

- AVIRIS Indian Pines dataset: 145×145 pixels with 220 spectral channels
- Coincidences due to signal vs. Coincidences due to noise \Rightarrow PCA yields six components explaining 99.66\% of total variance
- Reduce to six variables
- Find optimal permutations in S_{6} at different resolutions
- Incorporate these into a multi-Baire-kernel SVM
- Results are comparable to a Linear SVM, more complete results in most classes for multi-Baire-kernel SVM

4. Application

Byzantine Chant.

- single melody
- drone (Ison)

Skope of Chant.

- Enhance a poetic liturgical text
- Highlight important words
- Bring mind and heart to contents of text
- Audible Icon

4. Application

Byzantine Chant.

Idea of classification steps.

- Highlight emphasized syllables (they occur in important words)
- Identify Cadenzas
- Cadenzas are intermediate (end of thought) or final (end of phrase)
- Bring phrases of different lengths to uniform length by inserting blanks
- The unemphasized syllables (somehow) lead to the pitch of the next emphasized syllable
- "somehow" depends on number of syllables and musical distance to target pitch
- Melody usually stays on one pitch, or moves one step. Larger jumps occur on occasion.

4. Application

Paschal Canon, Tone 1.

It is the dáy of Resurréction! Let us be rádiant, o ye péoples!
Final Cadenza: Páscha, the Lórd's Páscha!
Alaska:
For from death to lífe, and from earth to héaven has Christ our God brought us
Boston:
For Christ God hath brought us from death unto lífe, and from earth unto héaven

Final Cadenza: as we sing the triúmphal hymn.
Refrain. Christ is risen from the dead.
http://www.musicarussica.com/compact_discs/i-099
http://www.musicarussica.com/compact_discs/i-083

4. Application

Question. \exists optimal σ which brings highlighted syllables first, in order of occurence, then other syllables in some order?

- Phrases without final cadenzas ${ }^{B}=$ Boston, ${ }^{A}=$ Alaska

- Final Cadenzas:

